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Motivation

= 100 comments

= 100 comments

• Feasible to get labels for all incoming data?
• Can we afford delay in identification of harmful data?

1 microsecond
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Requirements

• Unsupervised
• Real-time identification
• Incremental updates to the model
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Motivation

• Suspicious and malicious content may have a subtype-supertype 
relationship
• For example:

• Harassment Spam
• Bullying – abusive, rumors
• Profanity – expletives, crude language
• Trolling
• Threats – blackmail, threats to life

• Scam
• Money scam
• Malware downloads
• Phishing
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Requirements

• Unsupervised
• Real-time classification
• Incremental updates to the model
• Potentially use the subtype-supertype relationship
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Possible Solutions

• Support Vector Machines
Fast querying
No subtype-supertype relation usage, no incremental updates, supervised

13



Possible Solutions

• Support Vector Machines
Fast querying
No subtype-supertype relation usage, no incremental updates, supervised

• Flat clustering
Unsupervised, fast querying
No subtype-supertype relation usage, no incremental updates

14



Possible Solutions

• Support Vector Machines
Fast querying
No subtype-supertype relation usage, no incremental updates, supervised

• Flat clustering
Unsupervised, fast querying
No subtype-supertype relation usage, no incremental updates

• Online flat clustering
Unsupervised, fast querying, incremental updates
No subtype-supertype relation usage
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Proposed Solutions

• Hierarchical Clustering
Unsupervised, fast querying, subtype-supertype relation usage
No incremental updates
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Proposed Solutions

• Hierarchical Clustering
Unsupervised, fast querying, subtype-supertype relation usage
No incremental updates

• Online Hierarchical Clustering
Unsupervised, fast querying, subtype-supertype relation usage, incremental 
updates
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Our Contributions

• Practically efficient Hierarchical Clustering with guarantees on the 
quality of solution produced
• Demonstration of use of Hierarchical Clustering for

• Real Time Classification
• Anomaly detection

• Heuristics for Online Hierarchical Clustering
• Algorithm for Online Eigenvector Updates in a Dynamic Stream
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Hierarchical Clustering

3 41 2 7 85 6

3 41 2 7 85 6

1

2

3 4 5 6 7 8

1 43 65 87
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How do you measure the Quality?
How is the splitting performed?
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Objective Function 
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[1] Dasgupta, S. (2015). A cost function for similarity-based hierarchical clustering. arXiv preprint arXiv:1510.05043.



Objective Function

3 4

1 2

6

5

3

4

1

26

5

11

1

11

1 1

1
0

26



Objective Function

3 4

1 2

6

5

11

1

11

1 1

3 41 2 65

27



Objective Function
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Edges split: (2,5)
Weight of the edge (2,5): 1

Number of nodes in cluster: 6

Cost: 1x6 = 6
Total Cost = 6
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Objective Function
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Weight of the edge (1,2): 1
Weight of the edge (1,4): 1
Weight of the edge (3,4): 1

Number of nodes in cluster: 4

Cost: (1+1+1) x 4 = 12
Total Cost = 6 + 12 = 18
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Objective Function
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Weight of the edge (5,6): 1

Number of nodes in cluster: 2

Cost: 1x2 = 2
Total Cost = 18 + 2 = 20
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3 41 2 65

2 41 3 5 6

30



Objective Function

3 4

1 2

6

5

11

1

11

1 1

Edges split: (2,4)
Weight of the edge (2,4): 1

Number of nodes in cluster: 2

Cost: 1x2 = 2
Total Cost = 20 + 2 = 22
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3 41 2 65

2 41 3 5 6

2 4

31



Objective Function
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Edges split: (1,3)
Weight of the edge (1,3): 1

Number of nodes in cluster: 2

Cost: 1x2 = 2
Total Cost = 22 + 2 = 24

3 41 2 65
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2 41 3 5 6
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Objective Function
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Objective Function

• NP-Hard!
• Natural Greedy Criterion:

• Sparsest cut at every internal node.
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Sparsest Cut, Expansion and Conductance
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[2] Trevisan, L. (2013). Lecture notes on expansion, sparsest cut, and spectral graph theory.



Sparsest Cut, Expansion and Conductance
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Splitting Rules

• Related Work [1]
• Based on Arora Rao Vazirani Algorithm for Sparsest Cut [3]

• Quality: O((√log n)OPT)
• Time: õ (n4) 

• Based on Leighton Rao Algorithm for Sparsest Cut [4]
• Quality: O((log n)OPT)
• Time: O(n3) 

37

[1] Dasgupta, S. (2015). A cost function for similarity-based hierarchical clustering. arXiv preprint arXiv:1510.05043.
[3] Arora, S., Rao, S., & Vazirani, U. (2009). Expander flows, geometric embeddings and graph partitioning. Journal of the ACM (JACM), 56(2), 5.
[4] Leighton, T., & Rao, S. (1999). Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM (JACM), 46(6), 787-
832.



Splitting Rules

• Our Work
• Based on Eigenvectors for Sparsest Cut

• Quality: O( nΔ log n √OPT)
• Time: O(min(nd2, n2d))

38

Δ = degmax/√degmin



Splitting Rules

• Our Work
• Based on Eigenvectors for Sparsest Cut

• Quality: O( nΔ log n √OPT)
• Time: O(min(nd2, n2d))

• Based on Approximate Eigenvectors for Sparsest Cut
• Quality: O( nΔ log n √(OPT + ε))
• Time: O(min(nd2, n2d))
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Splitting Rules

• Our Work
• Based on Eigenvectors for Sparsest Cut

• Quality: O( nΔ log n √OPT)
• Time: O(min(nd2, n2d))

• Based on Approximate Eigenvectors for Sparsest Cut
• Quality: O( nΔ log n √(OPT + ε))
• Time: O(min(nd2, n2d))

• Based on Random Hyperplanes
• Quality : O(n OPT ) (Expected Cost)
• Time : O(nd)

40

Δ = degmax/√degmin



Splitting Rules

• Our Work
• Based on Eigenvectors for Sparsest Cut

• Quality: O( nΔ log n √OPT)
• Time: O(min(nd2, n2d))

• Based on Approximate Eigenvectors for Sparsest Cut
• Quality: O( nΔ log n √(OPT + ε))
• Time: O(min(nd2, n2d))

• Based on Random Hyperplanes
• Quality : O(n OPT ) (Expected Cost)
• Time : O(nd)

• 2-Means
• Quality : ??
• Time: O(2nd)
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Implementation Details

● Data, X, is normalized.
● Adjacency matrix created as XTX.
● We work with (nxd) matrix D-½ X instead of D-½ XTXD-½ which is nxn.
● Store the d-dimensional singular vector.
● Data is not normalized for large datasets.
● Balanced split point is chosen for practical reasons.
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How do we use it for querying?
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How do we use it for querying?

3 41 2 7 85 6

3 41 2 7 85 6

1
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3 4 5 6 7 8

1 43 65 87
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9

Candidate Size: 3 or 4
Return: 7 85 6
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How do we use it for querying?
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Candidate Size: 2
Return: 5 6
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How do we use it for querying?

3 41 2 7 85 6

3 41 2 7 85 6
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9

Candidate Size: 1
Return: 6
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How do we find Nearest Neighbors

• Let Candidate Set Size be 4
• Returned points:

• Suppose we want 3 approximate nearest neighbors
• Calculate distance of from each of

• Return the 3 closest ones, I.e.,

7 85 6

7 85 6
9

9 7 85 6

76 5
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Classification using the Hierarchy

• Fix some candidate set size, and number of nearest neighbors desired
• Traverse the tree and find the nearest neighbors
• All the points returned have a label associated with them
• Take the maximum vote among them

76 5

Not 
Spam SpamNot 

Spam
9

Not 
Spam
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Classification Results

Dataset Number of Classes Dimensions Train Size Test Size

MNIST 10 784 60000 10000

ALOI 1000 128 88000 20000

CoverType 7 53 480102 100000

Comments (LinkedIn) 3 50 106537 20000
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Comments Dataset

• 3 Classes
• Spam: Content which is offensive, harmful, abusive or disruptive. These 

comments violate the Terms and Conditions of the networking site and are to 
be completely removed from the site.
• Low-Quality: Content which is irrelevant to the discussion or unappealing. 

Such content may receive a diminished visibility on the site.
• Clear: Content which is okay to receive unrestricted distribution on the site.

• Due to business requirements, treated as 2 binary classification 
problems.
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Classification Results
Method MNIST

Precision Recall F1-Score Query Time
ALOI
Precision Recall F1-Score Query Time

Hierarchical 
Tree Based 
Methods

EV 0.93 0.929 0.93 0.702 0.893 0.889 0.891 0.701

AEV 0.924 0.924 0.924 0.729 0.893 0.890 0.891 0.690

RP 0.818 0.810 0.814 0.789 0.776 0.768 0.772 0.550

2-means 0.929 0.929 0.929 1.243 0.892 0.889 0.890 0.97

Linkage Single 0.114 0.955 0.204 ~2k 0.036 0.670 0.069 ~2k

Average 0.100 0.999 0.182 ~2k 0.001 0.971 0.002 ~2k

Complete 0.180 0.393 0.247 ~2k 0.124 0.519 0.200 ~2k

Wards 0.548 0.602 0.574 ~2k 0.393 0.562 0.463 ~2k

SVM 0.930 0.930 0.930 - 0.843 0.830 0.836 -

ANN LSH 0.954 0.953 0.953 0.850 0.936 0.920 0.934 0.68

Kd-Tree 0.969 0.968 0.968 540.38 0.949 0.948 0.948 22.30
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Classification Results

Method CoverType

Precision Recall F1-Score Query Time

Comments
Clear vs (Low Quality + Spam)
Precision Recall F1-Score

Comments
(Clear + Low Quality) vs Spam
Precision Recall F1-Score

EV 0.925 0.921 0.923 0.380 0.750 0.840 0.80 0.739 0.740 0.740

AEV 0.925 0.922 0.923 0.370 0.760 0.840 0.80 0.738 0.740 0.740

RP 0.904 0.897 0.901 0.370 - - - - - -

2-means 0.930 0.930 0.930 0.810 0.63 0.61 0.62 0.64 0.70 0.67

SVM 0.211 0.308 0.250 - - - - - - -

LSH 0.581 0.739 0.650 44.72 0.71 0.74 0.73 0.62 0.63 0.62

Kd-Tree 0.942 0.935 0.938 0.760 - - - - - -
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Anomaly Detection using the hierarchy

• Maintain a lookup table with class-wise average pairwise distances
• Classify the query (say C)
• Find the average distance of the query from the nearest neighbors, 

(say d1)
• Lookup average pairwise distance for C (say d2)
• If d2 + threshold < d1

• Detect it as an anomaly

• Else
• Report its' class
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SVM as Baseline for Anomaly Detection

• Use prediction probability
• For a non-anomaly point, the prediction probability of its' actual class 

is high
• If prediction probability of the query < threshold

• Detect it as anomaly

• Else
• Report its' class
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Anomaly Detection Results

• Dataset Creation
• ALOI Dataset partitioned into two subsets

• Train Set: 950 classes,
• Test Set: 50 new classes + points from old classes

Dataset Train Set Size Test Set Size Number of points from
Unseen Class Seen Class

Dataset 1 92451 15549 5400 10149

Dataset 2 92443 15557 5400 10157

Dataset 3 92288 15712 5400 10312
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Anomaly Detection Results

Approx Eigenvector
Threshold Precision Recall F1 Score

Support Vector Machine
Threshold Precision Recall F1 Score

Dataset 1 0.2 0.53 0.78 0.63 0.05 0.42 0.82 0.55

0.3 0.58 0.66 0.61 0.08 0.42 0.76 0.54

0.4 0.62 0.53 0.57 0.1 0.42 0.56 0.48

Dataset 2 0.2 0.53 0.80 0.64 0.05 0.42 0.84 0.56

0.3 0.58 0.66 0.62 0.08 0.44 0.80 0.56

0.4 0.63 0.54 0.58 0.1 0.45 0.61 0.52

Dataset 3 0.2 0.52 0.78 0.62 0.05 0.42 0.86 0.57

0.3 0.57 0.67 0.62 0.08 0.43 0.78 0.55

0.4 0.61 0.53 0.57 0.1 0.43 0.60 0.50
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Requirements Satisfied

• Unsupervised
• Real-time classification
• Incremental updates to the model
• Potentially use the subtype-supertype relationship
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Online Hierarchical Clustering

• Has the ability to perform incremental updates to the model.
• Recent work:

• [1] proposed an algorithm based on bounding boxes called PERCH.

• Our work:
• We propose two heuristics.
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[5] Kobren, A., Monath, N., Krishnamurthy, A., & McCallum, A. (2017, August). A hierarchical algorithm for extreme clustering. In Proceedings of the 23rd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining (pp. 255-264). ACM.



Online Hierarchical Clustering
1

59



Online Hierarchical Clustering
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Online Hierarchical Clustering
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Online Hierarchical Clustering
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Online Hierarchical Clustering
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Online Hierarchical Clustering

1
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Query Time? O(n)
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Doubling Heuristic

• Rebuild subtree when the number of points at root of subtree is 
doubled.
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Balancing Heuristic

• Rebuild subtree when balance of subtree is distorted.
• Unbalanced if number of nodes in one side is more than double of 

nodes in the other side.
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Results

Dataset Doubling Heuristic
Precision Recall F1-Score

Balancing Heuristic
Precision Recall F1-Score

MNIST 0.917 0.916 0.916 0.893 0.890 0.891

ALOI 0.826 0.806 0.816 0.807 0.795 0.801

CoverType 0.880 0.877 0.878 0.882 0.876 0.879
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Results 

Method (Clear + Low Quality) vs Spam
Precision Recall F1-Score

Clear vs (Low Quality + Spam)
Precision Recall F1-Score

AEV 0.753 0.853 0.80 0.685 0.686 0.685

PERCH 0.708 0.971 0.82 0.48 0.454 0.466
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Requirements Satisfied

• Unsupervised
• Real-time classification
• Incremental updates to the model
• Potentially use the subtype-supertype relationship
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Limitations

• No theoretical bound on the quality of the solution
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Next Steps

• Recall that we had a splitting strategy of using eigenvectors.
• Can we somehow update the eigenvectors in an online way?
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Online Hierarchical Clustering
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Online Hierarchical Clustering

Logarithmic querying time

Points that are close are separated lower in the tree
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Online Hierarchical Clustering

Delete 2 from the node containing (2,3,4,5)
Insert 2 to the node containing (1)
Delete 4 from the node containing (4,5)
Insert 4 to the node containing (3)
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Next Steps

• Recall that we had a splitting strategy of using eigenvectors
• Can we somehow update the eigenvectors in a streaming way?
• But we need insertion and deletion of points!
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Online Eigenvector Updates

● Partitioning in Dynamic Graphs
● Sensors
● Removal of Adversarial Inputs
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Online Eigenvector Updates

● Related work when data is only inserted
○ Streaming PCA with limited memory, evaluated on the spiked covariance 

model [6].
○ Based on regret minimization [7].
○ Sub-sampling and dimensionality reduction [8,9].

78

[6] Mitliagkas, I., Caramanis, C., & Jain, P. (2013). Memory limited, streaming PCA. In Advances in Neural Information Processing Systems (pp. 2886-2894).
[7] Garber, D., Hazan, E., & Ma, T. (2015, July). Online Learning of Eigenvectors. In ICML (pp. 560-568).
[8] Clarkson, K. L., & Woodruff, D. P. (2009, May). Numerical linear algebra in the streaming model. In Proceedings of the forty-first annual ACM symposium 
on Theory of computing (pp. 205-214). ACM.
[9] Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix 
decompositions. SIAM review, 53(2), 217-288.



Orthogonal Dual Spiked Covariance Model

79

● Inspired by the Spiked Covariance Model [6]
● Insert from

○ xt = uzt + wt
○ xt = vzt + yt

● Delete from
○ xt = vzt + yt

where zt ∼ N(0,1), wt ∼ N(0, 𝜎12I), yt ∼ N(0, 𝜎22I)

All zt, wt, yt are mutually independent and uTv = vTu = 0.

[6] Mitliagkas, I., Caramanis, C., & Jain, P. (2013). Memory limited, streaming PCA. In Advances in Neural Information Processing Systems (pp. 2886-2894).



Algorithm

80



Theoretical Guarantees
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Insertion
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Insertion

83



Deletion
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Theoretical Guarantee
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Results

Error (Degrees) Eigenvalue

Batch Size = 100, 40k operations, Probability of Insertion = 0.5
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Results

Error (Degrees) Eigenvalue

Batch Size = 100, 40k operations, Probability of Insertion = 0.8
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Results

Error (Degrees) Eigenvalue

Batch Size = 200, 40k operations, Probability of Insertion = 0.5
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Results - Rank 2

Error (Degrees) Eigenvalue

Batch Size = 200, 40k operations, Probability of Insertion = 0.5

89



Results - Rank 2

Error (Degrees) Eigenvalue

Batch Size = 200, 40k operations, Probability of Insertion = 0.5
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Conclusion

● We propose three splitting rules for hierarchical clustering with 
guaranteed worst case performance.

● We propose two heuristics for Online Hierarchical Clustering.
● We identify and propose an algorithm for Online Eigenvector 

Updates.
● We evaluate the model on the orthogonal dual spiked covariance 

model and empirically on the MNIST dataset.
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Future Work

• Generalize online eigenvector update results for rank-k case.
• Use them to obtain a bound on Online Hierarchical Clustering.
• Look at Distributed Hierarchical Clustering or Distributed Online 

Hierarchical Clustering problems.
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