
Towards a Scalable Online Hierarchical Clustering
Algorithm

by

Ishita Doshi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Technology
in Computer Science and Engineering,

Indian Institute of Technology Gandhinagar
2019

Advisory Committee:

Prof. Anirban Dasgupta
Prof. Manoj Gupta
Prof. Shanmuganathan Raman

CERTIFICATE

It is certified that the work contained in the thesis titled “Towards a Scalable Online

Hierarchical Clustering Algorithm” by Ishita Doshi (Roll No. 17210038) has been

carried out under my supervision and this work has not been submitted elsewhere for a

degree.

Prof. Anirban Dasgupta

Associate Professor

Date: June 11, 2019 Computer Science and Engineering

Place: Gandhinagar Indian Institute of Technology Gandhinagar

Gujarat - 382355, India

ii

Abstract

Clustering algorithms play a vital role in organizing data in small meaningful

groups. Hierarchical clustering has some added benefits. It does not require

specification of the number of clusters and it outputs a more structured hier-

archy which could help in understanding the data better. However, the use

of hierarchical clustering in practice has been hampered by the lack of im-

plementable algorithms with a provable theoretical bound on the quality. To

address this situation, we propose splitting strategies for divisive hierarchical

clustering which are scalable in terms of time, have linear space usage and have

theoretical guarantees in terms of a specific hierarchical clustering objective.

We also demonstrate the excellent empirical performance of an efficient imple-

mentation of the proposed strategies for real-time near-neighbor classification

and anomaly detection.

In many modern applications, due to the large scale of data and the unavail-

ability of data prior to building the model, an online or streaming approach is

required. To solve the online hierarchical clustering problem, we first propose

two naive heuristics and demonstrate their performance empirically. We also

identify a natural sub-problem - Online eigenvector estimation. We propose

an algorithm to maintain the top eigenvector for a stream of operations where

the data may be inserted or deleted. The performance of the algorithm is

evaluated theoretically on a model proposed by us, the orthogonal dual spiked

covariance model, and empirically on the MNIST dataset.

iii

Acknowledgements

It is my pleasure to acknowledge the roles of several individuals and institutions

who were instrumental for the completion of this thesis.

First of all, I would like to express my sincere appreciation to Prof. Anirban

Dasgupta for his invaluable guidance. His support, suggestions, and patience

have been instrumental for the development of this work.

I would also like to thank everyone in the Computer Science field of Indian

Institute of Technology Gandhinagar for their constant support and for the

various opportunities given to me throughout my Masters program.

I would like to thank Jayesh Choudhari, Dr. Rushi Bhatt, Ram Madhavan

and Sreekalyan Sajjala for the suggestions, discussions and constant support.

Apart from technical support, I would like to express my appreciation towards

my family, friends and colleagues for their support, patience, understanding

and unconditional love.

iv

Contents

Certificate ii

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

Abbreviations x

Symbols xi

1 Introduction 1

1.0.1 Our Contributions . 3

1.0.2 Organization of the Thesis . 4

2 Preliminaries 5

2.0.1 Cost Function for Hierarchical Clustering 5

2.0.2 Sparsest Cut . 6

2.0.3 Laplacian, Eigenvalues and Expansion 8

2.0.4 Power Method . 8

3 Related Work 10

3.0.1 Cost function for Hierarchical Clustering 10

3.0.2 Algorithms . 11

3.0.2.1 Agglomerative Merging Criteria 11

3.0.2.2 Divisive Splitting Criteria 11

3.0.2.3 Recent advancements . 12

3.0.3 Online Algorithms . 12

3.0.3.1 Hierarchical Clustering . 13

3.0.3.2 Streaming Eigenvector Updates 13

v

Contents vi

4 Efficient Hierarchical Clustering 14

4.0.1 Proposed Splitting Methods . 14

4.0.2 Theoretical Guarantees . 17

4.0.2.1 Hierarchical Clustering using Eigenvectors 17

4.0.2.2 Approximation to the Planted Partition 18

4.0.2.3 Hierarchical Clustering using Approximate Eigenvector . . 21

4.0.2.4 Hierarchical Clustering using Random Hyperplanes 23

4.0.3 Experimental Evaluation . 24

4.0.3.1 Cost Function and Dendrogram Purity 25

4.0.3.2 Nearest Neighbor Classification using Hierarchies 25

4.0.3.3 Results . 27

4.0.3.4 Test of Significance . 28

4.0.3.5 Anomaly Detection using Hierarchies 29

4.0.4 Conclusion . 30

5 Online Hierarchical Clustering 31

5.0.1 Introduction . 31

5.0.2 Heuristics . 31

5.0.3 Results . 32

5.0.4 Eigenvector Updates for Hierarchical Clustering 33

5.0.5 Conclusion . 34

6 Online Eigenvector Updates 35

6.0.1 Introduction . 35

6.0.2 Problem Formulation and Notation 35

6.0.3 Proposed Algorithm . 37

6.0.4 Theoretical Guarantees . 37

6.0.4.1 Insertions . 38

6.0.4.2 Deletions . 40

6.0.5 Results . 43

6.0.6 Rank-k Updates . 45

6.0.7 Conclusion . 46

7 Conclusion 49

7.0.1 Future Work . 49

Bibliography 50

List of Figures

4.1 Degree Distributions for Datasets considered 25

4.2 Relation between Cost and Dendrogram Purty on Small Datasets 26

5.1 Online Hierarchical Clustering . 33

6.1 Results on the MNIST Dataset with Batch Size = 100 44

6.2 Results on the MNIST Dataset with Batch Size = 200 45

6.3 Results on the MNIST Dataset with 50% insertions for top-2 eigenvectors . 47

6.4 Results on the MNIST Dataset with 80% insertions for top-2 eigenvectors . 48

vii

List of Tables

4.1 Performance in terms of Precision(P), Recall(R), F1-Score(F) and Query
Time(QT) in milliseconds per query on MNIST and ALOI datasets (LSH
is with k = 3 and L = 20) . 27

4.2 Performance in terms of Precision(P), Recall(R), F1-Score(F) and Query
Time(QT) in milliseconds per query on Covertype and Comments datasets
(LSH is with k = 3 and L = 20) . 27

4.3 Test of Significance with AEV Splitting Rule 29

4.4 Performance in terms of Precision(P), Recall(R), F1-Score(F) for the Anomaly
Detection Task . 29

5.1 Precision(P), Recall(R) and F1-Score(F1) for the Online heuristics using AEV 33

5.2 Precision(P), Recall(R) and F1-Score(F1) on Comments Dataset for the
Doubling Heurestic . 33

viii

List of Algorithms

1 Power Method . 9

2 Power Method to Find Second Largest Eigenvector 9

3 Hierarchical Clustering . 15

4 Eigenvector partitioning . 15

5 Random Partitioning . 16

6 Approximate Eigenvector . 16

7 2-means . 16

8 Online Hierarchical Clustering . 32

9 Largest Eigenvector updates on Insertion 37

10 Largest Eigenvector updates on Deletion . 37

11 Rank-k updates on Insertion . 46

12 Rank-k updates on Deletion . 46

ix

Abbreviations

PSD Positive Semi-definite
EV EigenVector
AEV Approximate EigenVector
RP Random Hyperplane
HTNN Heirarchical Tree based Nearest Neighbors
ANN Approximate Nearest Neighbors
LT Linkage based Trees
SVM Support Vector Machine
RBF Radial Basis Functions
LSH Locality Sensitive Hashing
ALOI Amsterdam Library of Objects
GloVe Global Vectors for word representation
PERCH Purity Enhancing Rotations for Cluster Hierarchies
P Precision
R Recall
F1 F1-Score

x

Symbols

λ Eigenvalue or Singular Value
|| · ||2 2-norm
σ(·) Sparsest Cut
φ(·) Expansion
γ(·) Conductance
L Laplacian
E Expectation
R The set of Real numbers∑j

i Summation from i to j
| · | Size of the set
N (µ, σ2) Normal distribution with mean µ and variance σ2

< a,b > Dot product between a and b
G(V, E) Graph G with V vertices and E edges
i ∨ j Least common ancestor of i and j

xi

Introduction

Identifying interesting content for recommendation and personalization, or finding suspi-

cious activity is a fundamental problem for many social networks. The motivating problem

for us was identification of inappropriate and suspicious content posted on social media.

As better models evolve, spammers and hackers also evolve to find new methods to evade

detection. Thus, supervised learning and batch learning approaches would always have

high latency to identify the latest loopholes the adversaries would have found. Therefore,

faster, unsupervised, incremental algorithms are required to find newer types of content.

Identifying clusters of content which may differ from previously seen types is the first step

to pro-active identification of large spam attacks. Since we are faced with a wide range

of content types, many of which are new, it does not make sense to use flat clustering

algorithms with a pre-set number of clusters. However, the content types do have natural

subtype-supertype relations which are potentially useful for identification of new variants

of known types.

While it is essential to identify new content types, it is also necessary have the ability to

modify our model incrementally (in an online manner) to account for the newer content

types. Since data is arriving at a rapid speed, it is not feasible to get all the new content

types labelled as soon as they arrive. Thus, once a new content type has been identified,

the model needs to be modified to account for that type.

To summarize, we need the following capabilities from our content partitioning algorithm.

1. The algorithm needs to be unsupervised to ensure rapid response to new spam attacks

which have not been labelled yet, as well as for agnosticity with respect to different

types of labelling strategies.

2. It should have the ability to tag content in a hierarchy of classes to aid the process

of manual reviewing as well as to borrow strength from content subtype-supertype

relations and from user feedback.

1

Introduction 2

3. Query time, i.e., identification of the content type, needs to be near-real time to

prevent damage. Space usage should be scalable, preferably linear.

4. The algorithm should allow for incremental updates for fast incorporation of newly

identified content types.

Hierarchical clustering, a method of cluster analysis seeks to build a hierarchy of clusters.

A hierarchical clustering is usually represented by a dendrogram. In this work, we propose

an unsupervised online hierarchical clustering algorithm to serve the aforementioned needs

for data streams with a multitude of dynamic content types. While there are a number of

hierarchical clustering algorithms, until recently, there has not been any objective function

to quantify the quality of a hierarchical clustering. Dasgupta (2016) was the first to propose

an objective function for hierarchical clustering. Cohen-Addad et al. (2017) demonstrate

the appropriateness of the proposed cost function.

Dasgupta (2016) shows that obtaining the optimal clustering is NP-Hard through a reduc-

tion from a variant of the 3-SAT problem called the not-all-equal-SAT. While there are

approximation algorithms that have been proposed by Dasgupta (2016) for batch hierar-

chical clustering, these are based on max-flow and semi-definite programming Arora et al.

(2009); Leighton and Rao (1999). These algorithms are not appropriate in our setting

because of two reasons

1. They are not practical for large datasets, and

2. Resulting hierarchies cannot be used to fine where the new point fits in without

reconstructing the entire hierarchy.

We propose a hierarchical clustering algorithm based on eigenvectors, approximate eigen-

vectors and random hyperplanes that optimizes the cost function proposed by Dasgupta

(2016).

Though batch hierarchical clustering has most of the desirable properties, we cannot incre-

mentally modify the model to account for the new content types that have been identified.

Therefore, it is desirable to have an “online” hierarchical clustering algorithm. An online

algorithm processes data piece-by-piece in a serial fashion, and at any point in time, it

maintains a solution for all data seen till that point.

Online hierarchical clustering algorithms have not received their fair share of attention.

Though algorithms such as the one proposed by Kobren et al. (2017) exist to perform

online hierarchical clustering, no work exists with a guaranteed approximation to any cost

function.

Introduction 3

We first propose scalable algorithms based on eigenvectors, approximate eigenvectors and

random hyperplanes for the batch hierarchical clustering problem with guaranteed ap-

proximations to the above cost function. We then empirically demonstrate how to use

the hierarchy obtained in order to label new content using a variant of near-neighbor

classification, as well as in identification of anomalous content.

We also propose heuristics for the online hierarchical clustering problem and demonstrate

empirically that there is little quality degradation when compared to the batch hierarchical

clustering.

While trying to give theoretical bounds on the quality of online hierarchical clustering

algorithms, we encountered the sub-problem of online eigenvector updates. While all

existing work, for e.g., Mitliagkas et al. (2013); Garber et al. (2015) propose algorithms

to maintain eigenvectors in data streams which only deal with addition of new data, our

algorithm inherently requires addition as well as deletion of points. We propose algorithms

to maintain the largest eigenvectors in a data stream under addition and deletion of points,

give theoretical guarantees for a random model, i.e., the orthogonal dual spiked covariance

model (described in Section 6.0.2), and demonstrate empirical performance of the proposed

algorithms.

1.0.1 Our Contributions

Specifically, our contributions are as follows

1. Practically efficient hierarchical clustering algorithms based on eigenvectors, approx-

imate eigenvectors and random hyperplanes.

2. The hierarchical clustering obtained using these strategies have guaranteed approx-

imations to the hierarchical clustering objective.

3. Empirical demonstration of the use of the hierarchy to label new content using a

variant of near neighbor classification, and to identify anomalous content.

4. We demonstrate the performance of the eigenvector based hierarchical clustering

strategy on the planted partition random graph model.

5. Heuristics for the online hierarchical clustering problem and empirically demonstrate

the excellent performance of the heuristics.

6. An algorithm to calculate and maintain eigenvectors in a dynamic stream where data

may be added or deleted. We propose the orthogonal dual spiked covariance model

and give theoretical results for the proposed algorithm for this model, and we also

demonstrate the empirical performance on an open-source dataset.

Introduction 4

1.0.2 Organization of the Thesis

In Chapter 2, we outline the preliminaries, followed by the related work in Chapter 3.

In Chapter 4, we elaborate the proposed solution for efficient hierarchical clustering, give

theoretical bounds on the quality of solution and demonstrate the empirical performance of

the algorithms. In Chapter 5, we give two heuristics for the online hierarchical clustering

problem and demonstrate its performance empirically. Chapter 6 gives algorithm for

online eigenvector updates in a dynamic stream. We also give some theoretical results and

demonstrate the performance on the MNIST dataset. We also present algorithms for the

case where top-k eigenvectors are to be maintained. In Section 7, we conclude and outline

some possible future work.

Preliminaries

This chapter aims to build the background required for the theoretical part of the thesis.

We provide some definitions and quote some theorems to help the reader understand our

proofs.

2.0.1 Cost Function for Hierarchical Clustering

In Dasgupta (2016) proposed the cost function for a weighted undirected graph G =

(V, E , w). Let T be a rooted hierarchical clustering tree (not necessarily binary) for graph

G, where the leaves of the tree T are the nodes in the graph G. If i ∨ j denotes the least

common ancestor of i, j (say N) in the tree T , and |leaves(i ∨ j)| denotes the number of

leaves in the subtree rooted at N . The proposed cost function is given by:

costG(T) =
∑

(i,j)∈E

wij |leaves(i ∨ j)| (2.1)

If the weights of the edges denote the similarity between the two endpoints, then,

costG(T ∗) = minT costG(T)

If the weights of the edges denote the distance between the two endpoints, then,

costG(T ∗) = maxT costG(T)

where T ∗ is the optimal clustering tree.

The dual to this cost function was given in Bateni et al. (2017) as

revG(T) =
∑

(i,j)∈E

wij |non− leaves(i ∨ j)|

5

Preliminaries 6

If the weights of the edges denote similarity between the two endpoints, then,

revG(T ∗) = maxT revG(T)

If the weights of the edges denote the distance between the two endpoints, then

revG(T ∗) = minT revG(T)

where, |non− leaves(i)| gives |V| − |leaves(i)|.

This function also has the same properties as costG(T) + revG(T) = |V|
∑

(i,j)∈E wij .

For the rest of the paper, we will focus on the cost function proposed in Dasgupta (2016).

This function was shown to have a number of intuitive properties by Cohen-Addad et al.

(2017). We consider the edge weights denoting the similarity between two end points, i.e.,

costG(T) =
∑

(i,j)∈E

wij |leaves(i ∨ j)|

In Dasgupta (2016) it was shown that by doing a reduction from the not-all-equal-SAT,

it was shown that the proposed cost function is NP-Hard to optimize. In the same paper,

he proposed a natural greedy criterion to create the hierarchy by creating a split at every

node that minimizes
E(S, S)

|S||S|

where, S, S are the two partitions and S ∪ S = V, E(S, S) =
∑

i∈S,j∈S wij.

This quantity is also known as sparsest cut which will be discussed further in the Sec-

tion 2.0.2.

2.0.2 Sparsest Cut

In this section we provide some definitions about the sparsest cut, conductance and ex-

pansion from Trevisan (2013).

Definition 2.1. (Sparsest Cut) Let G = (V, E) be a graph and let (S, S) be a partition of

the vertices (a cut). Then the sparsity of the cut is

σ(S) :=
|V|2E(S, S)

2|E||S||S|

Preliminaries 7

where E(S, S) is the number of edges in E that have one endpoint in S and one endpoint

in S. The sparsest cut is, given a graph, to find the set of minimal sparsity. The sparsity

of a graph G = (V, E) is

σ(G) = minS⊆V σ(S)

It is also common to define σ(S) := E(S,S)

|S||S| as |V|
2

|E| is a fixed quantity for a graph.

Definition 2.2. (Expansion) Let G = (V, E) be a graph and let (S, S) be a partition of

the vertices (a cut). For a d-regular graph, the expansion of the cut is

φ(S) :=
E(S, S)

d ·min(|S|, |S|)

where E(S, S) is the number of edges in E that have one endpoint in S and one endpoint

in S. The expansion of the cut is, given a graph, to find the set of minimal expansion.

The expansion of a graph G = (V, E) is

φ(G) = minS⊆V φ(S)

For every regular graph, if |S| ≤ |V|2

1

2
σ(S) ≤ φ(S) ≤ σ(S)

Since φ(S) = φ(S) and σ(S) = σ(S),

1

2
σ(G) ≤ φ(G) ≤ σ(G)

Definition 2.3. (Conductance) Let G = (V, E , w) be a weighted graph and let (S, S) be

a partition of the vertices (a cut). The conductance of the cut is

γ(S) :=
E(S, S)

·min(vol(S), vol(S)

where E(S, S) is the sum of weight of edges in E that have one endpoint in S and one

endpoint in S. and vol(S) is the sum of weights of edges with both end points in S. The

conductance of the cut is, given a graph, to find the set of minimal conductance. The

expansion of a graph G = (V, E), w is

γ(G) = minS⊆V γ(S)

Preliminaries 8

2.0.3 Laplacian, Eigenvalues and Expansion

In this section, we provide some background on Laplacians, eigenvalues and the Cheeger

Inequality which will be the background for a large part of our first work.

Definition 2.4. If G is a graph, with adjacency matrix A and D is a diagonal matrix

with entry Dii =
∑

j Aij , then the Laplacian is defined as L = D −A. When the degrees

are fairly irregular, it is common to work with the normalized Laplacian matrix, L =

I −D−1/2AD−1/2. We deal with D−1/2AD−1/2 instead of L.

Theorem 2.5. For a graph G with n vertices, if λ1 ≥ . . . ≥ λn are the eigenvalues of

D−1/2AD−1/2, then 1−λ1 ≤ 1−λ2 ≤ . . . ≤ 1−λn are the eigenvalues of the corresponding

laplacian L, and

• 1− λ1 = 0

• 1− λ2 = 0 iff G has two or more components

• 1− λn ≤ 2

• 1− λn = 2 iff G is bi-partite.

Theorem 2.6. (Cheeger Inequality) Let G = (V, E) be a d-regular graph, 1
dA be its’ ad-

jacency matrix, If 1 = λ1 ≥ .. ≥ λn ≥ −1 are the eigenvalues of 1
dA, then, the Cheeger

inequality states that

1− λ2

2
≤ σ(G)

2
≤ φ(G) ≤

√
1− λ2 (2.2)

Corollary 2.7. If G is an irregular graph, the Cheeger inequality of Equation 2.2 still

holds.

2.0.4 Power Method

The power method Trevisan (2013) is an algorithm that approximates the largest eigen-

value and the corresponding vector of a given symmetric PSD matrix. The working of the

algorithm is elaborated in Algorithm 1.

To find the second largest eigenvalue and the corresponding eigenvector, we simply orthog-

onalize the vector x0 after step 3 of Algorithm 1 as x0 ← x0 − v1 < x0,v1 > where v1

is the eigenvector corresponding to the largest eigenvalue. We quote the following result

about the second largest eigenvalue from Trevisan (2013)

Preliminaries 9

Algorithm 1 Power Method

1: procedure PowerMethod(PSD Matrix M , int k)
2: Let M ∈ Rn×n
3: x0 ← −1, 1n

4: for i = 1 to k do
5: xi ←Mxi−1

6: return xk

Algorithm 2 Power Method to Find Second Largest Eigenvector

1: procedure PowerMethod2(PSD Matrix M , int k, vector v1)
2: Let M ∈ Rn×n
3: x0 ← {−1, 1}n
4: x0 ← x0 − xT

0 v1v1

5: for i = 1 to k do
6: xi ←Mxi−1

7: return xk

Theorem 2.8. For every PSD matrix M , positive integer k and parameter ε > 0, if v1

is a length-1 eigenvector of the largest eigenvalue of M , then with probability ≥ 3/16 over

the choice of x0, the power method as described in Algorithm 2, outputs a vector xk ⊥ v1

such that

xk
TMxk

xk
Txk

≥ λ2(1− ε) 1

1 + 4n(1− ε)2k
(2.3)

where λ2 is the second largest eigenvalue of M , counting multiplicities.

Related Work

In this chapter, we survey the related work.

3.0.1 Cost function for Hierarchical Clustering

In most learning algorithms, we try to optimize a certain cost function. Prior to 2015,

no cost function existed for hierarchical clustering. Dasgupta (2016) proposed the cost

function for a weighted undirected graph G = (V, E , w).

The proposed cost function has some desirable properties as described below.

• If the graph G is disconnected, the components are separated out earlier while build-

ing the hierarchy.

• Vertices which are closer to each other are separated lower down in the tree. If they

are split high up, they incur a high penalty.

• Unit weighted cliques have the same cost for any tree.

A “dual” for the cost function was proposed in Bateni et al. (2017). They termed it as

revenue. The sum of the cost and the revenue is a constant for a given graph. For both

these functions, the graph considered is a complete graph with weights on every edge.

Both these cost functions are NP-Hard to optimize. It was also shown in Dasgupta (2016)

that a natural greedy criterion is the minimize the sparsest cut ratio at every internal

node which is elaborated in Section 2.0.2.

Cohen-Addad et al. (2017) analyze the Dasgupta (2016) cost function and define the

necessary properties that a good cost function for hierarchical clustering should follow.

They claim that a good cost function must i) have the same cost for any dendrogram

10

Related Work 11

for unit weighted cliques, ii) must have the same cost if the left and right children are

swapped in the dendrogram, and iii) the cost is non decreasing if a node is added to the

graph. Monath et al. (2017) also propose a probabilistic and continuous version of the

cost function.

3.0.2 Algorithms

Hierarchical clustering algorithms can be either agglomerative or divisive. Agglomer-

ative algorithms are essentially bottom-up algorithms while divisive algorithms are top-

down. Hierarchical Agglomerative Clustering algorithms treat each data point to be in a

cluster on its own and merge these clusters based on some criteria. In Hierarchical Divisive

Clustering algorithms, all points are in in one cluster and they are split based on some

criteria. The order of merges or splits define the hierarchy.

3.0.2.1 Agglomerative Merging Criteria

Some well known merging criteria are:

1. Single Linkage: Each point is treated as a cluster and the merges are based on

minimizing the minimum distance between the clusters.

2. Average Linkage: Each point is treated as a cluster and the merges are based on

minimizing the average distance between the clusters.

3. Complete Linkage: Each point is treated as a cluster and the merges are based

on minimizing the maximum distance between the clusters.

4. Ward Linkage: Each point is treated as a cluster and the merges are based on

minimizing the variance inside the merged cluster.

When the clusters in question have more than one point, the distance computed is pairwise

distance between their respective points. All these algorithms have time complexity O(n2)

and space complexity O(n) where n is the number of points.

3.0.2.2 Divisive Splitting Criteria

A splitting criteria popularly used for divisive hierarchical clustering is:

Related Work 12

1. k-means: All points are in a single cluster and are split into k sub-clusters based

on the k-means algorithm. This algorithm has a time complexity of O(nk) per split

when there are n points in the cluster and we want to split them into k clusters.

3.0.2.3 Recent advancements

In Dasgupta (2016), it was shown that, if an algorithm with an approximation of O(αn)

to the sparsest cut is used for the hierarchical clustering, an O(αn log(n)) approximation

to the cost function is obtained. This was later improved by Charikar and Chatziafratis

(2017) to show that the approximation to the cost function is O(αn) and not O(αn log(n)).

The two best known approximation algorithms for the sparsest cut are the Leighton Rao

algorithm (LR) and the Arora Rao Vazirani algorithm (ARV).

The LR (Leighton and Rao (1999)) algorithm gives an αn = O(log(n)) approximation to

the sparsest cut. The algorithm makes use of multi-commodity flow to find a solution

for the sparsest cut problem. Though the proposed algorithm is has polynomial time

complexity, it is O(n2 log(n) + n3).

The ARV (Arora et al. (2009)) algorithm exploited semi-definite programming to propose

an O(
√

log(n)) approximation to the sparsest cut. Though it gives a good approximation,

the time complexity of the algorithm is O(n4).

The main drawback of these algorithms are:

• Time to build the clustering using the LR and ARV are extremely high. Most real

applications have enormous amounts of data and limited computational power which

makes it impractical.

• Traversing down the hierarchy to identify clusters is not possible with the LR or

ARV algorithms. For a new query, it is unclear which branch of the dendrogram

should be taken.

• Extending the LR or ARV algorithm for the Online hierarchical clustering problem

is not feasible.

3.0.3 Online Algorithms

In many settings, we may not have access to the whole data at once, or we may not be

able to process all the data in one shot. In such cases, algorithms are designed to build a

model in a piece by piece, serial fashion. In some cases, the data stream may be arriving

in a possibly never ending stream and a good-quality solution needs to be maintained.

Related Work 13

3.0.3.1 Hierarchical Clustering

For the case where we need to maintain a hierarchical clustering and data is arriving in

a possibly never ending stream, no algorithm with provable theoretical guarantees have

been developed.

The most recent work on Online Hierarchical Clustering was proposed by Kobren et al.

(2017). If a new point (say v) is to be added, v is added as a sibling to u where u =

argminx||v − x||2. This is achieved through maintaining a bounding box at each internal

node of the hierarchy. This bounding box maintains the maximum and the minimum

distance for each dimension. This addition of a point may separate two closer nodes which

is rectified through a series of rotations which are based on comparisons between a node

and its’ aunt. They also promote balanced, shallow trees over deep trees due to the high

insertion and rotation times.

To target the online hierarchical clustering problem, we identify the sub-problem of online

updation of eigenvectors under insertion and deletion operations.

3.0.3.2 Streaming Eigenvector Updates

When we have a never ending stream of incoming points, calculating and maintaining the

top-k right singular vectors has been studied before. Mitliagkas et al. (2013) proposed

an algorithm to maintain the top-k singular vectors and singular values. The proposed

algorithm performed one step of the power method to calculate the singular values for every

data point. They study the performance of this algorithm on the spiked covariance model.

It is shown that the vector(s) they estimate are off by a small error term, E, bounded

by ||E||2 = ε. It was also the first work which maintained the top-k singular values with

O(kd) space where d is the number of dimensions in the data and had provable theoretic

bounds.

There are other works which focus on the online singular vectors and online Principal

Component Analysis (PCA) problem. Online PCA with regret minimization has been

considered in Garber et al. (2015). Sub-sampling and dimensionality reduction has also

been considered in Clarkson and Woodruff (2009); Halko et al. (2011).

The more interesting problem is the update of singular vectors if the stream consists of

both insertions and deletions of points as, in many real-life scenarios, points may get

added as well as deleted. One such example is that of social networks. People, comments,

images may get added and they may also get deleted. Till date, there are no theoretical

guarantees for this problem.

Efficient Hierarchical Clustering

Overview

In this chapter, we present a scalable, divisive hierarchical clustering algorithm with guar-

anteed worst case bounds for the cost function given in Equation 2.1. The divisive hi-

erarchical clustering algorithms starts by taking all points to be in the same cluster and

recursively splits them into two sub-clusters based on some SPLITTING RULE. We consider

binary splits, as one of the properties of the cost function is that the optimal tree is binary

in nature. We also show the performance of one splitting rule on a simple stochastic block

model.

We then empirically demonstrate two tasks which make use of the hierarchy. Firstly, we use

the hierarchy in order to label new content using a variant of near-neighbor classification.

Secondly, we use the hierarchy for identification of new anomalous content. We perform

experiments on three open source datasets as well as on a dataset obtained from one of

the largest social networking sites (LinkedIn). Algorithm 3 outlines the pseudocode for

the proposed hierarchical clustering and the querying mechanism used for near-neighbor

classification.

4.0.1 Proposed Splitting Methods

We propose four strategies that we use for the SPLITTINGRULE. Let t denote a generic tree-

node, in which we have the points Vt = {v1, . . . , v`}. We describe the following techniques

to compute the splitting hyperplane and the split point, (ht, st). Note that the hierarchy

is being created in a batch mode, i.e., where all data is available while building the model.

However, maintaining the splitting hyperplane and split point for each node enable us to

query the hierarchy in real time with individual query points.

Random Hyperplane (RP). We sample ht uniformly at random from Sd−1 = {x ∈ Rd, ‖x‖2 =

1}. Note that this can be done by sampling y ∼ N (0, Id×d) and returning x = y
‖y‖ . Define

14

Efficient Hierarchical Clustering 15

Algorithm 3 Hierarchical Clustering

1: procedure MakeTree(V)
2: if |V | = 1 then
3: return leaf containing |V |
4: hr, sr ←splittingRule(V)
5: S ← {x ∈ V, hr · x ≤ sr}
6: LeftTree ← MakeTree(S)
7: RightTree ← MakeTree(V \ S)
8: return [hr, sr, LeftTree, RightTree]

9: procedure Query(T, x)
10: r =root(T).
11: if T contains less than B points or T has no children then
12: return all of them.
13: else
14: hr, sr be the splitting hyperplane and location for r.
15: if x · hr ≤ sr then Query left child of r with x
16: else Query right child of r with x

17: procedure Classify(T, x, k)
18: S ←Query(T, x)
19: C ← k nearest neighbors to x from S.
20: lx ← majority vote of the labels of C.
21: return lx

Algorithm 4 Eigenvector partitioning

1: procedure splittingrule(V)
2: if |V | = 1 then
3: return leaf containing |V |
4: Let A ∈ R`×d be the matrix formed by the points.
5: d = Ae where e is vector of all ones, D = diag(d).
6: Ã = D−1/2A.
7: ht ∈ Rd be the second largest right singular vector of Ã.
8: Create X = {Ãi∗ · ht, ∀i ∈ [`]}.
9: Consider the sorted sequence X = 〈X1, . . . , X`〉. Find the set Sj = {k ∈ `,Xk ≤
Xj} that has smallest γ(Sj).

10: return (ht, Xj)

X = {ht · vi, i = 1, . . . , `}. The splitting point st is chosen as the median of X. The

pseudocode is presented in Algorithm 5.

Eigenvector (EV): Let D ∈ R`×` be the diagonal matrix with Dii =
∑

j Aij . We calcu-

late the normalized feature-feature matrix F = AtD−1A ∈ Rd×d. Let x2 be the eigenvector

corresponding to the second largest eigenvalue of F . We define u2 = D−1/2Ax2/‖D−1/2Ax2‖2.

Note that u2 is the second largest right singular vector ofD−1/2AAtD−1/2. The coordinates

of u2 are sorted. We find the value in u2, say Xj , and return the set Sj = {k ∈ `,Xk ≤ Xj}

Efficient Hierarchical Clustering 16

Algorithm 5 Random Partitioning

1: procedure separatingHyperplane(V)
2: ht ∼ N(0, Idxd), st ← 0.
3: return ht/‖ht‖2, st.

that has the smallest γ(Sj). The pair (x2, Xj) is returned as the splitting hyperplane and

threshold. The pseudocode is presented in Algorithm 4.

Approximate Eigenvector (AEV): Inspired by McCartin-Lim et al. (2012), we use an

approximate eigenvector, rather than the exact one. In Algorithm 6, we present the

pseudocode of how we use power iterations to estimate the eigenvector corresponding to

the second largest eigenvalue of the normalized covariance matrix.

Algorithm 6 Approximate Eigenvector

1: procedure splittingrule(V)
2: Let A ∈ R`×d be the matrix formed by {v1, . . . , v`}.
3: v ← random vector in Rd.
4: d = Ae where e is vector of all ones, D = diag(d).
5: Ã = D−1/2A.
6: for i ∈ 1 . . .M1 do . M1 is O(log(n)/ε).
7: v ← Ãt(Ãv), v ← v/‖v‖2
8: u← random vector in Rd.
9: for i ∈ 1 . . .M2 do . M2 is O(log(n)/ε).

10: u← (I − vvt)ÃtÃu.
11: u← u/‖u‖2
12: Create X = {Ãi∗ · u, ∀i ∈ [`]}.
13: Consider the sorted sequence X = 〈X1, . . . , X`〉. Find the set Sj = {k ∈ `,Xk ≤

Xj} that has smallest γ(Sj).
14: return (u,Xj).

2-means: For this strategy, we find a 2-means clustering of the data and define ht to be

the hyperplane that is equally distant from the two centers. The threshold st is set to be

0, and the two clusters are returned as the partitions.

Algorithm 7 2-means

1: procedure separatingHyperplane(V)
2: Let A ∈ R`×d be the matrix formed by {v1, . . . , v`}.
3: Use k-means++ Arthur and Vassilvitskii (2007) to get a bi-partitioning of V .
4: Let c1 and c2 be the two cluster centers.
5: return ht = 2(c1 − c2), st ← ‖c2

1‖ − ‖c2‖2.

Efficient Hierarchical Clustering 17

4.0.2 Theoretical Guarantees

4.0.2.1 Hierarchical Clustering using Eigenvectors

We first show that our partitioning strategy of using the second left singular vector of the

matrix V ∈ R`×d gives an approximation to the objective given in Equation 2.1. In order

to do this, we first quote a particular lemma from Dasgupta (2016) that characterizes the

structure of any tree, in particular the optimal tree.

Lemma 4.1. (Lemma 11 of Dasgupta (2016)): Pick any binary tree, T on V . There

exists a partition A,B of V , where |V |3 ≤ |A|, |B| ≤
2|V |

3 such that C(A,B)
|A||B| <

27
4|V |3 costV (T).

We now show a bound on the cost of the tree formed by using an exact eigenvector as the

splitting subroutine in Algorithm 3.

Theorem 4.2. Let V contain n points. The point-point similarities are encoded as C :

V ×V → [0, 1]. Let tree T ∗ be a minimizer of costV (·) and let T be the tree returned by using

the second largest eigenvector of D−1/2V V tD−1/2 as a splitting rule. Then costV (T) ≤
cn log(n)

√
costV (T ∗) for some c ≤ ∆max

√
27

∆min
.

Proof. We prove this by induction. The base case, when n = 1, the cost(T) = 0. Let us

assume that the claim holds for graphs with at most n− 1 nodes.

Suppose the optimal tree is T ∗ and consider the root of T ∗, with the entire set of points V .

From Lemma 4.1, we can say that there exists a partition (A,B) of V such that C(A,B)
|A||B| will

be bounded by 27cost(T ∗)
4n3 . When an exact eigenvector is used as the splitting strategy, for a

node t, if V is the data matrix which contains all the points as the rows, and ht is the second

right singular vector of D−1/2V , then D−1/2V ·ht is the (scaled) second left singular vector

of D−1/2V , as well as the second largest eigenvector of D−1/2V V tD−1/2 = D−1/2CD−1/2.

Let (A,B) (say |A| ≤ |A ∪ B|/2) denote the spectral cut found. Using Lemma 2.2, we

know that γ(A) ≤ O(
√
γ(C)), where γ(C) denotes the conductance of C. Given that the

degrees of C all lie in the range [∆min,∆max], we know that φ(C) ≥ ∆min · γ(C), and

φ(A) ≤ ∆max · γ(A). Hence,

φ(A) ≤ ∆max · γ(A), φ(A) ≤ ∆max

√
γ(C) ≤ ∆max√

∆min

√
φ(C)

Note that for any partitioning (S, Sc), 1
nφ(S) ≤ C(S,Sc)

|S||Sc| ≤
2
nφ(S). Suppose (A′, B′) is the

split guaranteed by Lemma 4.1. Recall that (A,B) is the split returned by the eigenvector.

Efficient Hierarchical Clustering 18

Let θ = ∆max√
∆min

. Then, using Lemma 4.1

C(A,B)

|A||B|
≤ 2φ(A,B)

n
≤
θ
√
φ(A′, B′)

n
≤ θ

n

√
n
C(A′, B′)

|A′||B′|

≤ θ√
n

√
27

4|V |3
costV (T ∗) = θ

√
27costV (T ∗)

4|V |4

nC(A,B)

|A||B|
≤ C(A,B)

|A|n/2
≤

√
27

4|V |3
costV (T ∗)

Let us consider trees T ∗A, TA and T ∗B, TB which are the trees T ∗ and T restricted to the

nodes in A and B respectively. Recall that T ∗ is the optimal tree.

So, Let 0 < |A| = pn ≤ n
2 . Let |A| ≤ |B| = (1 − p)n. Since |A|, |B| < n, we apply the

induction hypothesis.

costA(TA) + costB(TB) ≤ nθ
√

27

4

(
p
√
costA(T ∗A) log(pn) + (1− p)

√
costB(T ∗B) log((1− p))

)
≤ nθ

√
27costV (T ∗)

4
(p log p+ (1− p) log(1− p) + log n)

Now, costV (T) ≤ nC(A,B) + cost(A) + cost(B) ≤ nθ
√

27costV (T ∗)
2 (p(1− p) + p log p+ (1−

p) log(1− p) + log n) ≤ n log nθ

√
27cost(T ∗)

2 .

4.0.2.2 Approximation to the Planted Partition

In this section, we show that the bound that spectral partitioning gives us is significantly

better if the data does have a nice structure. Traditionally, the merits of spectral par-

titioning have been theoretically demonstrated using stochastic block models or mixture

models. We consider a similar setting. Note that this is an idealized setting, only meant

to demonstrate that spectral partitioning based splitting can give good approximation to

the hierarchical cost under simple generative models.

Assume that the similarity matrix C is generated using a (n, p, q)-planted partition model

with two equisized partitions. C is constructed through the following generative process:

for every pair of distinct nodes, i, j, an edge is added with probability p, if i and j belong

to the same partition and q otherwise. All these
(
n
2

)
decisions are independent. We use

the following result that shows that given C, the eigenvector based sparsest cut algorithm

would find a partition close to the ground truth.

Efficient Hierarchical Clustering 19

Lemma 4.3. From McSherry (2001): In the planted partition model, the spectral sparsest

cut algorithm mis-clusters at most a constant, k number of points where

k =
36p

(p− q)2

Lemma 4.4. Let G(V,E) be an unweighted undirected clique on n points, and let G′(V ′ , E′)
be another unweighted undirected clique on n + k nodes, then costG′ (·) = (c)costG(·) for

n >> 1 and k ≤ n and c is some constant.

Proof. From Dasgupta (2016), we know that costG(T) = 1
3(n3 − n) and costG′ (T) =

1
3((n+ k)3 − n− k), and every tree has the same cost.

Now,

costG′ (T)

costG(T)
=

1
3((n+ k)3 − n− k)

1
3(n3 − n)

=
(n3 + k3 + 3nk(n+ k))− n− k

n3 − n

=
n3(1 + k3

n3 + 3k(n+k)
n2 − 1

n2 − k
n3)

n3(1− 1
n2)

=
(1 + 1 + 3)

1
(Since k ≤ n)

= (1 + ε)costG′ (T) = (c)costG(T)

Theorem 4.5. Let G(V,E) be an unweighted undirected graph generated from planted

partition model. Let C contain adjacency matrix on V , and let T ∗ be a minimizer of

costV (·) and if T is the tree returtned by using the splitting rule of Algorithm 4 inside

Algorithm 3, then costV (T) ≤ c1costV (T ∗) where c1 = max(1 + 72p
qn(p−q) , c) and c is a

constant.

Proof. Let d be the expected degree of G. Then, d = (p+ q)n2 − p ≈ (p+ q)n2 . Since G is

an almost regular graph, we do not perform the degree normalization for this theorem.

We quote a small result on the first eigenvector of C and its corresponding L = 1 −
D−1/2CD−1/2 where D is the diagonal matrix with dii = d. The first eigenvectors of C,L
are given as

C1 = n
2 (p+ q)1 and Lv = 1v (v = D−1/21)

Efficient Hierarchical Clustering 20

Let T be the tree that we get using Algorithm 4 inside Algorithm 3, and T ∗ be the optimal

tree. For the planted partitions, the expected optimal cost is given by

EcostV (T ∗) =
∑
i,j

Ewij |leaves(T ∗[i ∨ j])| =
∑
i,j

Prob[edge (i, j)] |leaves(T ∗[i ∨ j])|

=
qn3

4
+ 2

p

3
(
n3

8
− n

2
)

Using Lemma 4.3, we misclassify at most k = 36p
(p−q)2 vertices, the cost of the top split in

T is

EcostV (T) ≤ qn3

4
+

36p

2(p− q)2
pn2 − 36p

2(p− q)2
qn2 =

qn3

4
+

36pn2

2(p− q)
=
qn3

4
(1 +

72p

qn(p− q)
)

For the future splits, we make two assumptions

1. Some edges will have weight Cij < p, and

2. The size of both the partitions will be in the range [n2 − k,
n
2 + k], and k = 36p

(p−q)2 .

Also, since we have two equi-sized clusters, k ≤ n
2 . Now, let the two partitions identified

by A,B. Using Lemma 4.4,

EcostA(T) + EcostB(T) ≤ 2p

3
c(
n3

8
− n

2
)

Thus, the total cost can be bounded by

EcostV (T) ≤ qn3

4
(1 +

72p

qn(p− q)
) + c

2p

3
(
n3

8
− n

2
)

≤ c1(
qn3

4
+

2p

3
(
n3

8
− n

2
)) (where c1 = max(1 +

72p

qn(p− q)
, c))

= c1EcostV (T ∗)

While we state the above result in the simple planted partition model, it is possible to

come up with an analogous statement for other variants, e.g. when the points come from

a Gaussian mixture model.

Efficient Hierarchical Clustering 21

4.0.2.3 Hierarchical Clustering using Approximate Eigenvector

Algorithm 2 starts with a random vector and applies power iterations to the vector. We

thus have a close approximation to the first eigenvector, using which we get a close ap-

proximation to the second, again by applying power iteration. We first quote a result

that shows that assuming we have approximated the first singular vector v1, the second

singular vector of C̃ is also well approximated.

Lemma 4.6. Consider a matrix M = I − L = D−1/2XXtD−1/2 and 0 = λ1 ≤ ... ≤
λn ≤ 2 are the eigenvalues of L. By running power iteration on M ′ = XTD−1X, we get
xtLx
xtx ≤ λ2 + ε

Proof. If 0 = λ1 ≤ . . . ≤ λn ≤ 2 are the eigenvalues of L, 1 = 1− λ1 ≥ . . . ≥ 1− λn ≥ −1

are the eigenvalues of M .

Now, M = D−1/2XXtD−1/2 = (XtD−1/2)
t
(XtD−1/2). Note that M is a PSD matrix,

and let M = Y tY , where Y = (AtD−1/2). Also, eigenvalues for M will be bounded in

the range [0, 1]. Also, eigenvalues for Y tY are the same as the eigenvalues for Y Y t. And,

Y Y t = XtD−1X = M ′. This also implies that, since we use C = XXt, the eigenvalues of

L are also in the range [0, 1].

Thus, we prove the inequality 4.6 using M instead of M ′. Using Theorem 2.8, using power

method and setting k = O(logn
ε)

xTMx

xTx
≥ (1− λ2)(1− ε)

xTLx

xTx
≤ λ2 + ε

Corollary 4.7. Suppose xTLx
xT x

≤ λ2+ε ≤ 2φ(G)+ε. It also follows that φ(S) ≤
√

2(λ2 + ε) ≤√
4(φ(G) + ε). I.e. we can find a cut of expansion O(

√
φ(G) + ε)

Theorem 4.8. Let V contain n points. The point-point similarities are encoded as C :

V × V → [0, 1]. Let tree T ∗ be a minimizer of costV (·) and let T be the tree returned by

using the Algorithm 3 with the splitting rule defined in Algorithm 6. Then costV (T) ≤
cn log(n)

√
costV (T ∗) + ε for some c ≤ ∆max

√
27

∆min
and ε is a small quantity.

Proof. The proof is similar to that of Theorem 4.2 and is provided here for completeness.

Efficient Hierarchical Clustering 22

We prove this by induction. The base case, when n = 1, the cost(T) = 0. Let us assume

that the claim holds for graphs with at most n− 1 nodes.

Suppose the optimal tree is T ∗ and consider the root of T ∗, with the entire set of points V .

From Lemma 4.1, we can say that there exists a partition (A,B) of V such that C(A,B)
|A||B| will

be bounded by 27cost(T ∗)
4n3 . When an exact eigenvector is used as the splitting strategy, for a

node t, if V is the data matrix which contains all the points as the rows, and ht is the second

right singular vector of D−1/2V , then D−1/2V ·ht is the (scaled) second left singular vector

of D−1/2V , as well as the second largest eigenvector of D−1/2V V tD−1/2 = D−1/2CD−1/2.

Let (A,B) (say |A| ≤ |A ∪ B|/2) denote the spectral cut found. Using Lemma 2.2, we

know that γ(A) ≤ O(
√
γ(C)), where γ(C) denotes the conductance of C. Given that the

degrees of C all lie in the range [∆min,∆max], we know that φ(C) ≥ ∆min · γ(C), and

φ(A) ≤ ∆max · γ(A). Hence,

φ(A) ≤ ∆max · γ(A), φ(A) ≤ ∆max

√
γ(C) ≤ ∆max√

∆min

√
φ(C)

Note that for any partitioning (S, Sc), 1
nφ(S) ≤ C(S,Sc)

|S||Sc| ≤
2
nφ(S). Suppose (A′, B′) is the

split guaranteed by Lemma 4.1. Now, since we are using approximate eigenvector, then

(A,B) is the split returned. Let θ = ∆max√
∆min

. Then, using Lemm 4.1,

C(A,B)

|A||B|
≤ 2φ(A,B)

n
≤
θ
√
φ(A′, B′)

n
≤ θ

n

√
n
C(A′, B′)

|A′||B′|

≤ θ√
n

√
27

4|V |3
costV (T ∗) = θ

√
27(costV (T ∗))

4|V |4

Therefore, using Lemma 4.7,

nC(A,B)

|A||B|
≤ C(A,B)

|A|n/2
≤

√
27

4|V |3
(costV (T ∗) + ε)

Let us consider trees T ∗A, TA and T ∗B, TB which are the trees T ∗ and T restricted to the

nodes in A and B respectively. Recall that T ∗ is the optimal tree.

Efficient Hierarchical Clustering 23

So, Let 0 < |A| = pn ≤ n
2 . Let |A| ≤ |B| = (1 − p)n. Since |A|, |B| < n, we apply the

induction hypothesis.

costA(TA) + costB(TB) ≤ nθ
√

27

4

(
p
√
costA(T ∗A) + ε log(pn)

+ (1− p)
√
costB(T ∗B) + ε log((1− p))

)
≤ nθ

√
27(costV (T ∗) + ε)

4
(p log p+ (1− p) log(1− p) + log n)

Now, costV (T) ≤ nC(A,B) + cost(A) + cost(B) ≤ nθ

√
27costV (T ∗)+ε

2 (p(1 − p) + p log p +

(1− p) log(1− p) + log n) ≤ n log nθ

√
27cost(T ∗)+ε

2 .

4.0.2.4 Hierarchical Clustering using Random Hyperplanes

For this strategy, we use a random hyperplane to partition the data. We now show a result

that shows that using random hyperplanes to do a clustering has a provable worst case

guarantee.

Theorem 4.9. For any arbitrary dot product similarity matrix C, with all 0 ≤ Cij ≤ 1, the

hierarchical clustering produced using a random partitioning has an approximation factor

of O(n).

Proof. Let the angle between points i and j be denoted by θij = cos−1(Cij). Given

that the partitioning vector or equivalently, the hyperplane, has a direction which is uni-

formly chosen, and the points i and j are split iff they lie on different sides of the result-

ing hyperplane, at any given tree node that has both i and j, P (i, j split) =
θij
π . and

P (i, j not split) = 1− θij
π . Hence,

P (i, j split at level l) =P (i, j not split till level l − 1) · P (i, j split at level l)

=

(
1− θij

π

)(l−1) θij
π

If we use a median based splitting strategy, then each node at level l has n/2l leaves.

Hence if the pair (i, j) are split at level l, then the contribution of the edge is nCij/2
l.

Thus the expected cost using a median splitting strategy is:

E costV (T) ≤
∑
i,j

nCij

log(n)∑
l=1

(
1− θij

π

)(l−1) θij
π

(
1

2

)l

Efficient Hierarchical Clustering 24

The term inside the second summation is a GP.

E costV (T) ≤
∑
i,j

n

2
Cij

θij
π

1−
(

1
2

(
1− θij

π

))(log(n)−1)

1− 1
2

(
1− θij

π

)
 ≤∑

i,j

n

2
Cij

θij
π

2 ≤
∑
i,j

nCij

(As 0 ≤ θij ≤ π)

Now, we lower bound the optimal cost, costV (T ∗). There can be two cases, (1) Cij = 0,

and (2) Cij > 0. For the second case |leaves(T [i ∨ j])| >= 2. So, costV (T ∗) ≥ 2
∑

ij Cij ,

where T ∗ is the optimal tree. Thus,

EcostV (T)

costV (T ∗)
≤
∑

i,j nCij∑
i,j 2Cij

=
n
∑

i,j Ci,j

2
∑

i,j Ci,j
=
n

2

4.0.3 Experimental Evaluation

In this section, we evaluate the performance of our proposed solutions, which will hereforth

be referred to as Hierarchical Tree Based NN (HTNN), on four splitting rules against state

of the art baselines for three open-source datasets and a real world dataset from the

social networking site. The datasets used are ALOI from Rocha and Goldenstein (2014)

(Dimensions = 128, Classes = 1k, Train size = 88k, Test size = 20k), MNIST from

LeCun et al. (1998) (Dimensions = 784, Classes = 10, Train size = 60k, Test size =

10k), Covertype from Dheeru and Karra Taniskidou (2017) (Dimensions = 53, Classes

= 7, Train size = 480k, Test size = 100k). The real world dataset is a Comments dataset

which consists of textual data. Each word in the comment is converted to a 50-dimensional

vector using pretrained GloVe embeddings from Pennington et al. (2014) and the comment

is the average of these embeddings. The dataset consists of ∼ 100k Train comments and

20k Test comments. This dataset has 3 labels, namely, Spam (Content which is offensive,

harmful, abusive or disruptive. These comments violate the Terms and Conditions of the

networking site and are to be completely removed from the site), Low-Quality (Content

which is irrelevant to the discussion or unappealing. Such content may receive a diminished

visibility on the site. In our observations, Spam and Low-Quality categories contain very

similar content with minor differences, which leads to a difficult classification problem),

and Clear (Content which is okay to receive unrestricted distribution on the site).

Our implementation for benchmarking use the following changes to make the algorithms

more efficient in practice. For a spectral partitioning with the desired worst case guaran-

tees, as described in Algorithm 4, all possible sequence based partitions {Sj ,= 1 . . . , n}

Efficient Hierarchical Clustering 25

MNIST Dataset ALOI Dataset Covertype Dataset Comments Dataset

Figure 4.1: Degree Distributions for Datasets considered

need to be searched. This takes time O(|E|) where |E| is the number of edges. Also,

spectral partitioning is not guaranteed to return a balanced cut, which is what we need in

order to ensure a logarithmic query time. In order to tackle these issues, for experiments

we choose a splitting point u.a.r. in the interval [X`/3, X2`/3], which denote the (`/3, 2`/3)

medians of {Xi}.

In Algorithm 4 and Algorithm 6 we use degree normalization for the similarity matrices,

in order to obtain low-conductance cuts. As shown in Figure 4.1, our datasets have

almost regular degree distribution, i.e., if the mean degree is d then ∆min = (1 − α)d

and ∆max = (1 + α)d. Since degree normalization has to be done at every internal node,

for large datasets, namely Covertype, we do not perform degree normalization in the

experiments to avoid the extra overhead.

4.0.3.1 Cost Function and Dendrogram Purity

In this task, we aim to find a relation between the cost function proposed by Dasgupta

(2016) with dendrogram purity Kobren et al. (2017). We generated a tree with high purity

using AEV and evaluate the corresponding cost of the tree. To obtain trees with lower

purity, we randomly sample and shuffle a fixed fraction of the leaves of the tree and evaluate

the cost and purity for the resultant tree. As the fraction of leaves to be shuffled increased,

the purity decreased while the cost increased. The trend is shown in Figure 4.2 on the

Iris(150 points, 3 attributes, 4 classes), Glass(214 points, 10 attributes, 7 classes) and

Spambase(4601 points, 57 attributes, 2 classes) taken from Dheeru and Karra Taniskidou

(2017).

4.0.3.2 Nearest Neighbor Classification using Hierarchies

In this task, we use our proposed hierarchical clustering method for the nearest neighbor

classification task. We use the tree to find the approximate NN of the query point by

traversing the tree to narrow down the candidate set size and doing a brute force search

on a small number of points. The pseudocode for the querying and classification mechanism

is given in Algorithm 3.

Efficient Hierarchical Clustering 26

Iris Dataset Glass Dataset Spambase Dataset

Figure 4.2: Relation between Cost and Dendrogram Purty on Small Datasets

We report our results on the four datasets described above for two types of metrics. First,

classification performance, is the standard classification analysis which includes macro-

averaged Precision, Recall, and F1 Scores on the datasets. Second, system performance,

compares system time taken for querying the models. The Comments classification task

has specific business requirements that require definition of two binary sub-problems for

the dataset. First subtask, Clear v/s (Low-Quality + Spam), determines whether a

comment should receive unrestricted distribution on the site. Second subtask, (Clear +

Low-Quality) v/s Spam identifies spam comments that should be removed from the site.

We compare performance of the following algorithms:

1. Our proposed methods, Hierarchical Tree Based NN (HTNN) with splitting rules: EV

(using the exact eigenvector), AEV (using an approximate eigenvector), RP (using a

random plane) and 2-means (k-means with k = 2).

2. Linkage based trees (LT): Single, Average, Complete and Wards Linkages which

minimize minimum, average, maximum and the merged variance between clusters

respectively. There isn’t any direct way to query in this structure as there is no

distance information at the internal nodes that can be used. The tree is cut-off

when there are as many clusters as the number of class labels. Each cluster is taken

to be as one class. We take pairs of points from the Test set and then measure

(using precision/recall/F1-Score) whether the algorithm accurately predicts the pairs

of point to be from the same class.

3. SVM: The standard Support vector machine classifier with the best kernel among

(polynomial, rbf, sigmoid).

4. Approximate Nearest Neighbor Structures (ANN): The standard k-d Tree Bentley

(1975) and LSH Indyk and Motwani (1998) used for approximate nearest neighbor

searches. For k-d-trees, we use the standard k-d-tree querying mechanism. For LSH,

we use the multi-probe strategy with 2 probes per table. The chosen k which gave the

best performance was 10. The falconn library (by Andoni et al. (2015)) function

LSHConstructionParameters gives us an initial estimate for the LSH parameters.

Efficient Hierarchical Clustering 27

Table 4.1: Performance in terms of Precision(P), Recall(R), F1-Score(F) and Query
Time(QT) in milliseconds per query on MNIST and ALOI datasets (LSH is with k = 3

and L = 20)

MNIST ALOI
Methods P R F QT P R F QT

H
T

N
N EV 0.930 0.929 0.930 0.702 0.893 0.889 0.891 0.701

AEV 0.924 0.924 0.924 0.729 0.893 0.890 0.891 0.67
RP 0.818 0.815 0.816 0.789 0.776 0.768 0.772 0.55

2-means 0.929 0.929 0.929 1.243 0.892 0.889 0.890 0.97

L
T

Average 0.114 0.955 0.204 ∼2k 0.036 0.670 0.069 ∼2k
Single 0.100 0.999 0.182 ∼2k 0.001 0.971 0.002 ∼2k

Complete 0.180 0.393 0.247 ∼2k 0.124 0.519 0.200 ∼2k
Ward 0.548 0.602 0.574 ∼2k 0.393 0.562 0.463 ∼2k
SVM 0.93 0.93 0.93 - 0.843 0.830 0.836 -

A
N

N LSH 0.954 0.953 0.953 0.85 0.936 0.92 0.934 0.68
k-d Tree 0.969 0.968 0.968 540.38 0.949 0.948 0.948 22.30

Table 4.2: Performance in terms of Precision(P), Recall(R), F1-Score(F) and Query
Time(QT) in milliseconds per query on Covertype and Comments datasets (LSH is with

k = 3 and L = 20)

Covertype Comments
Clea vs Clear + LQ

LQ+Spam vs Spam
Method P R F QT P R F P R F

H
T

N
N EV 0.925 0.921 0.923 0.38 0.75 0.84 0.8 0.73 0.74 0.74

AEV 0.925 0.922 0.923 0.37 0.76 0.84 0.8 0.73 0.74 0.74
RP 0.904 0.897 0.901 0.37 - - - - - -

2-means 0.930 0.930 0.930 0.81 0.63 0.61 0.62 0.64 0.70 0.67
SVM 0.211 0.308 0.250 - - - - - - -

A
N

N LSH 0.581 0.739 0.650 44.72 0.71 0.74 0.73 0.62 0.63 0.62
k-d Tree 0.942 0.935 0.938 0.76 - - - - - -

4.0.3.3 Results

In this section, we summarize performance comparisons between algorithms described in

Section 4.0.3.2 on the ALOI and MNIST datasets (Table 4.1) and on the Covertype and

Comments datasets (Table 4.2). We use 20 tables for LSH as log(n) for all datasets lie in

[16, 20] (n is the size of Train set).

Classification and Performance Analysis : Here, we compare performance of the above

algorithms in terms of their classification/run-time performances.

We report performance numbers on a Test set averaged over five runs for each dataset.

We also consider 10 nearest neighbours for the HTNN and ANN algorithms. From Table 4.1

we see that precision, recall and F1-score of HTNN is comparable to ANN and HTNN performs

better than LT on all tasks. Also, HTNN performs similar to SVM on MNIST and ALOI but for

Covertype dataset the precision/recall and F1 score for SVM is poor as the SVM algorithm

did not converge for the large dataset.

Efficient Hierarchical Clustering 28

LSH, though has comparable quality and querying time, it does not maintain any hierarchy,

and thus will be unsuitable for tasks where the hierarchical structure may be beneficial. It

also does not perform well for the real-world dataset. The k-d tree performs poorly in terms

of query time (Table 4.1) and its query time increases with data dimensionality, which

makes it unfeasible for high dimensional problems. There are two possible reasons– we use

the standard kd-tree nearest neighbor querying mechanism, which can take time almost

linear since it searches the cells adjacent to the one the query point falls in. Furthermore,

our larger datasets are sparse, and partitioning the data on a coordinate’s median value is

not useful if more than 50% of the values are zero. HTNN is 741, 33, and 1.88 times faster

than kd-tree on the open source datasets MNIST, ALOI, and Covertype respectively. As

the number of data points increases, memory usage of LT based data structures becomes

unfeasible as observed on the Covertype dataset. Query time for SVM and LT are also

too large to feature in Table 4.2. We also perform the test of significance for the ALOI and

the MNIST datasets on 5 samples obtained from different simulations of the algorithms.

Clear v/s (Low-Quality+ Spam) and (Clear+ Low-Quality) v/s Spam Tasks: These

tasks are binary sub-problems on Comments dataset, which are important for the site. As

mentioned above, the (Clear+ Low-Quality) v/s Spam task is harder because there is sig-

nificant overlap between Low-Quality and Spam categories. For Clear v/s (Low-Quality+

Spam) task, HTNN performs approximately 9% better than LSH (Table 4.2). For the

(Clear+ Low-Quality) v/s Spam task the F1-Score for both LSH and HTNN reduces, but

HTNN still outperforms LSH. Note that LSH is not hierarchical tree based data structure

which is a need for the application. Tree variants of LSH (e.g., LSH Forest) exist, but it

is unclear how to merge and interpret multiple trees of the forest for the application. For

Comments dataset we do not show the performances of LT, SVM , and k-d tree based data

structures because of their time and space consumption which makes them infeasible for

the application.

We run all algorithms on an Intel(R) Xeon(R) CPU E5-1620 with 64 GB RAM. All

algorithms proposed in this paper were coded in Python3.6 using Numpy 1.15.1. SVM,

k-d Tree and LT algorithms were used from python’s scikit-learn library version 0.19.1.

LSH from the falconn library was used and LSHConstructionParameters was used to

give an initial estimate of the required parameters.

4.0.3.4 Test of Significance

We perform the test of significance using scipy library in-built function ttest ind. This

was a Student’s t-test. We run the AEV, SVM, kd-tree and LSH algorithms five times and

compare the results for them in Table 4.3.

Efficient Hierarchical Clustering 29

Table 4.3: Test of Significance with AEV Splitting Rule

SVM k-d Tree LSH p-value
ALOI Reject Reject Reject 0.05

MNIST Fail to reject Reject Reject 0.05

Table 4.4: Performance in terms of Precision(P), Recall(R), F1-Score(F) for the
Anomaly Detection Task

AEV SVM
Threshold P R F Threshold P R F

D
a
ta

1 0.2 0.53 0.78 0.63 0.05 0.42 0.82 0.55
0.3 0.58 0.66 0.61 0.08 0.42 0.76 0.54
0.4 0.62 0.53 0.57 0.1 0.42 0.56 0.48

D
a
ta

2 0.2 0.53 0.80 0.64 0.05 0.42 0.84 0.56
0.3 0.58 0.66 0.62 0.08 0.44 0.80 0.56
0.4 0.63 0.54 0.58 0.1 0.45 0.61 0.52

D
a
ta

3 0.2 0.52 0.78 0.62 0.05 0.42 0.86 0.57
0.3 0.57 0.67 0.62 0.08 0.43 0.78 0.55
0.4 0.61 0.53 0.57 0.1 0.43 0.60 0.50

Let H0 be the hypothesis that the F1-Score for the two algorithms come from the same

distribution.

For MNIST, we fail to reject the null hypothesis for AEV vs SVM as the values obtained are

very close to each other. For all other datasets, we are able to reject the null hypothesis

with a p-value of 0.05.

4.0.3.5 Anomaly Detection using Hierarchies

In this task, we use our hierarchical clustering method for anomaly detection. Since

ALOI has 1k classes, we separate out 50 classes from the dataset. We also sample points

from other classes. We create 3 such test sets, each with about 5k points from the unseen

classes and 10k points from seen classes. The train set consists of ∼ 93k points.

We follow a modified version of the classification mechanism used in the nearest neighbor

classification task. The two main modifications are i) we calculate the average pairwise

distance of the S points returned from query (say d1), find the k-NN from the query and

compare the average k-NN distances (say d2 to d1, and ii) if d2 > d1 by a significant

amount, then we mark a node T at a height of 3
4h where h is the depth of the tree. For a

new point, if T is marked and d2 > d1 by a substantial amount (threshold), then mark that

query as a possible anomaly. For the baseline, we use SVM’s prediction probabilities. If a

point is from a seen class, it should have a high prediction probability (threshold) for that

class, and a new point should not have a high prediction probability for any class. This

intuition was used for the experiments. From Table 4.4 we observe that for similar recall,

we get a higher precision. This indicates that we are catching the new points with higher

Efficient Hierarchical Clustering 30

accuracy (i.e., we label non-anomaly points to be an anomaly lesser than the SVM model).

We also observe that the AEV algorithm achieves a better F1-Score than SVM.

4.0.4 Conclusion

We present a hierarchical clustering algorithm with three splitting strategies. Each of these

have a guaranteed theoretical bound in terms of the cost function as given in Equation 2.1.

All proposed splitting strategies have time complexity O(nd2) if n is the number of points

and d is the dimensions. We also demonstrate the performance of this algorithm on three

open source dataset and one real dataset for two applications, namely, near-neighbor

classification and anomaly detection.

Though this model satisfies the requirements of being unsupervised and hierarchical with

low query time, there is no support for incremental updates. We target this requirement

in the next chapter.

Online Hierarchical Clustering

5.0.1 Introduction

One of the major requirements, as mentioned in Section 1, was to allow incremental

updates to the model. This allows the model to take into account the new content types

that were encountered. Thus, we focus on the online setting, where data does not arrive

as a batch of points but as a stream. Hierarchical clustering tree updates must be carried

out on the fly without access to yet-to-arrive data. Our goal is to maintain a cost efficient

hierarchical data structure. Though Kobren et al. (2017) proposed an online hierarchical

clustering algorithm recently, it does not have any theoretical bounds in terms of any

specific objective.

We present two heuristics for the online hierarchical clustering problem, empirically demon-

strate that the quality degradation as compared to the batch hierarchical clustering algo-

rithms is very little.

5.0.2 Heuristics

We propose a heuristic extension to the HTNN data structure. Intuition behind the heuristic

is as follows. When a new data point arrives, it is traversed down the tree to the most

relevant leaf and is added as a sibling of that leaf. If at any internal node u along the

path, a rebuild condition (described below) is met, the subtree rooted at u is rebuilt as

in the batch version of Algorithm 3. The proposed algorithm can be thought of as a

combination of Batch and Online versions. The pseudo-code of the algorithm is outlined

in Algorithm 8. We propose two heuristics for rebuilding the tree at node u. Those are

described as follows:

31

Online Hierarchical Clustering 32

Algorithm 8 Online Hierarchical Clustering

1: procedure InsertPoint(r, x)
2: if isNULL(r) then
3: return x
4: if isLeaf(r) then
5: hr, sr ← SplittingRule([leaves[T (r)] ∪ x])
6: I is new internal node with r, x as leaves and hr, sr as splitting hyperplane,

location
7: replace r with I in parent of r
8: return I
9: if Rebuild Condition is satisfied then

10: return MakeTree([leaves[T(r) ∪ x])

11: hr, sr be the splitting hyperplane, location for r.
12: if x · hr < sr then Insert x to left child of r.
13: else Insert x to right child of r.

14: return r

Doubling Heuristic: If |leaves(T [u])| = 2 ∗ ptsAdded(u), where ptsAdded(u) is the

number of new points added since the last rebuild operation, then the subtree rooted at u

is rebuilt.

Balancing Heuristic: If |leaves(T [u.left])| is greater than twice of |leaves(T [u.right])|,
where u.left, u.right are the left and right children of u, respectively, then the subtree

rooted at u is rebuilt. This guarantees a (1/3, 2/3) balancing condition in the tree.

5.0.3 Results

We report results using AEV as SplittingRule for all experiments. Table 5.1 summa-

rizes classification performance on open source datasets. For both the rebuild heuristics

described above, AEV achieves at least 80% of the offline F1 score on all the open source

datasets (also see Table 4.1).

For the Comments dataset, we compare AEV splitting rule with Doubling Heuristic

with the PERCH algorithm of Kobren et al. (2017). For the Clear v/s (Low-Quality+

Spam) task, F1-score for both AEV and PERCH are comparable. However, for the (Clear+

Low-Quality) v/s Spam task AEV performs around 41% percent better than PERCH. We

suspect this is because the AEV splitting rule is more suited for situations with high

class overlap along a few critical dimensions, as can be expected of overlapping text cat-

egories, compared to PERCH. The AEV splitting rule also performs best for batch mode

Comments task (see Table 4.1).

Online Hierarchical Clustering 33

Doubling Heuristic Balancing Heuristic
Dataset P R F1 P R F1
MNIST 0.917 0.916 0.916 0.893 0.890 0.891
ALOI 0.826 0.807 0.816 0.807 0.795 0.801

CoverType 0.880 0.877 0.878 0.882 0.876 0.879

Table 5.1: Precision(P), Recall(R) and F1-Score(F1) for the Online heuristics using
AEV

Clear vs LQ + Spam Clear + LQ vs Spam
Methods P R F1 P R F1

AEV 0.753 0.853 0.80 0.685 0.686 0.685
PERCH 0.708 0.971 0.82 0.48 0.454 0.466

Table 5.2: Precision(P), Recall(R) and F1-Score(F1) on Comments Dataset for the
Doubling Heurestic

(a) Hierarchical Clustering with Additions (b) Desired Hierarchical Clustering

Figure 5.1: Online Hierarchical Clustering

5.0.4 Eigenvector Updates for Hierarchical Clustering

The proposed heuristics do not have any approximation guarantee for the hierarchical

clustering produced. This is a major drawback as there is no bound on how bad the

clustering can get. Since we use eigenvectors for a set of points (in a non-incremental

manner) as a SPLITTINGRULE, the next logical step is to update the eigenvectors on the

fly. Though there is some work done on streaming or online updates of eigenvectors, this

is independent of the online hierarchical clustering. Also, most of the algorithms proposed

for online eigenvector updates deal with only addition of data. We first demonstrate our

inherent requirement of support for insertions and deletions.

In Figure 5.1, the root node shows points in the one dimensional space. The distance

between the points as shown in the root are an indicator of the Euclidean distance between

them. Suppose the points arrive in order as 1,2,3,4 and 5. Figure 5.1(a) shows the

clustering formed without any rebuilding. This hierarchical clustering has the following

properties:

• The tree formed can be unbalanced, thus query time could be as bad as O(n) where

n is the number of points

Online Hierarchical Clustering 34

• Points that are close in terms of distance can be far or separated in the tree.

These properties are undesirable as (i) we require a near real time querying, and (ii)

separating point close in terms of distance incurs a high cost. Figure 5.1(b) shows a tree

which does not have the aforementioned undesirable qualities. In this case, to go from

Figure 5.1(a) to Figure 5.1(b), the following changes would be required:

1. Delete node 4 from the node containing 4 and 5.

2. Insert node 4 to the node containing 3.

3. Delete node 2 from the node containing 2,3,4 and 5.

4. Insert node 2 to the node containing 1.

Thus, it is clear from the above example that we need deletions of points as well for

maintaining a hierarchical clustering tree with the desirable properties. The deletion

performed here is not a deletion from the dataset but deleting from one subtree and

inserting to another subtree. However, the insert operations can be performed by updating

the eigenvectors using the algorithm proposed by Mitliagkas et al. (2013). But, there is no

work which focuses on focuses on eigenvector updations for dynamic streams which have

insertion and deletion operations. Therefore, identifying the online eigenvector updates

for a dynamic stream as a subproblem, we propose an algorithm for the same in the next

chapter.

5.0.5 Conclusion

We present two heuristics for the online hierarchical clustering which show little qual-

ity degradation as compared to their batch counterparts. The heurisitics proposed in

this chapter satisfy all requirements of being unsupervised, hierarchical and incrementally

modifiable with near real-time classification. The drawback is that we do not have any

theoretical bounds on the quality of the solutions. To obtain a theoretical bound, we

identify the sub-problem of online eigenvector updates. This could potentially be used to

obtain a bound on the cost of the online hierarchical clustering algorithm. In the next

chapter, we focus on the online eigenvector update problem for dynamic streams.

Online Eigenvector Updates

6.0.1 Introduction

A natural sub-problem that came to notice while tackling the online hierarchical clustering

problem was that of Online Eigenvector Estimation. Though algorithms exist to main-

tain eigenvectors in setting where data can only be added such as the one by Mitliagkas

et al. (2013), our model inherently needed support for deletions as well as explained in

Section 5.0.4. No algorithm existed to update the eigenvector on insertions as well as

deletions (dynamic stream).

The problem of online eigenvector estimation in streams where points may be added or

deleted has various use-cases. One use case is in social networks where users may join and

leave, or comments, images, videos or other media may be added or deleted. Another use

case is in sensors where erroneous data may require deletion. In such cases, it is of utmost

importance to delete the data to get better accuracy. This directly translates to deletion

of a data point in the stream.

We first outline some naive heuristics for online hierarchical clustering and empirically

demonstrate that there is very little degradation in the quality of the solution. We pro-

pose an algorithm for the online eigenvector updation problem for the orthogonal dual

spiked covariance model as described in Section 6.0.2, give some theoretical guarantees

and demonstrate the empirical performance of the proposed algorithm.

6.0.2 Problem Formulation and Notation

We consider a dynamic streaming model, where at each time step t, we receive a point

(xt, op), where xt ∈ Rp and op is an operation. This operation can either be an insert

operation or a delete operation. Furthermore, any vector that is not explicitly stored can

never be revisited. Our aim is to compute the top eigenvector of the data.

35

Online Eigenvector Updates 36

We assume a probabilistic generative model for which data is sampled from at each step

t. The model is comprised of two orthogonal spikes. Specifically, we assume that the data

to be inserted is sampled at each time step as:

xt = uzt + wt (6.1)

or

xt = vzt + yt (6.2)

where u ∈ Rp×1 is a fixed vector (i.e., the eigenvector), zt ∈ Rk×1 is a multivariate normal

random variable, i.e.,

zt ∼ N (0, 1)

vector wt ∈ Rp×1 is the noise vector for the model 6.1 and is also sampled from a multi-

variate normal distribution, i.e.,

wt ∼ N (0p×1, σ
2
1Ip×p)

vector yt ∈ Rp×1 is the noise vector for the model 6.2 and is also sampled from a multi-

variate normal distribution, i.e.,

yt ∼ N (0p×1, σ
2
2Ip×p)

Furthermore u ⊥ v, i.e, uTv = vTu = 0, and all zt,wt,yt are mutually independent.

The points to be deleted only come from the points inserted from the model given in

Equation 6.2. We also assume that the points and operations come in batches, that is,

a batch can either be data from Model 6.1 which is to be inserted, or data can be from

Model 6.2 which has to either to be inserted or deleted.

The aim of this work is to provide guarantees for a dynamic streaming algorithm that

requires O(p) memory.

We shall denote matrices by capital letters (e.g. A), vectors by lower case bold letters

(e.g. x). ||x||q denotes the q−norm of x, ||A|| or ||A||2 denotes the spectral norm of A

and ||A||F denotes the Frobenius norm of A. < x,y > denotes the dot product of vectors

x and y. In proofs the constant C is used loosely and may vary at every statement.

Online Eigenvector Updates 37

Algorithm 9 Largest Eigenvector updates on Insertion

1: procedure Insert(B,q, λ)
2: s← 0
3: for xt ∈ B do
4: y←< q,xt > xt

5: s← s + y
6: λ← λ+ < q,y >

7: s← 1
B s

8: q← s
||s||2

9: return q, λ

Algorithm 10 Largest Eigenvector updates on Deletion

1: procedure Delete(B,q, λ)
2: s← 0
3: λt ← 0
4: for xt ∈ B do
5: y←< q,xt > xt

6: s← s + y
7: λt ← λt+ < q,y >

8: s← λq− s
9: q← s

||s||2
10: λ← λ− λt
11: return q, λ

6.0.3 Proposed Algorithm

6.0.4 Theoretical Guarantees

We first quote some results from Mitliagkas et al. (2013).

Lemma 6.1. For a batch of insertions where the points come from Model 6.1, with prob-

ability 1− C/T , for C a universal constant, we have

∣∣∣∣∣∣ 1

B

∑
xtxt

T − uut − σ2
1I
∣∣∣∣∣∣

2
≤ ε

Lemma 6.2. For a batch of points which come from Model 6.2 With probability 1−C/T ,

for C a universal constant, we have:

∣∣∣∣∣∣ 1

B

∑
xtxt

T − vvt − σ2
2I
∣∣∣∣∣∣

2
≤ ε

Lemma 6.1 and Lemma 6.2 show that for large enough batch size B, the empirical co-

variance matrices are close to the actual covariance matrix. That is, for a batch of points

Online Eigenvector Updates 38

from Model 6.1, 1
B

∑
t xtx

T
t is close to uuT +σ2

1I and for a batch of points from Model 6.2,
1
B

∑
t xtx

T
t is close to vvT + σ2

2I

For the rest of the chapter, let us assume that qτ =
√
ατu +

√
γτv +

√
δτgτ where gτ is

orthogonal to both u, v, and ατ + γτ + δτ = 1.

It is also worthwhile to note that

ατ = (uTqτ)2 =
(uTsτ)2

||sτ ||22
(6.3)

γτ = (vTqτ)2 =
(vTsτ)2

||sτ ||22
(6.4)

δτ = (gT
τ qτ)2 =

(gT
τ sτ)2

||sτ ||22
(6.5)

6.0.4.1 Insertions

We now characterize the behaviour of our algorithm on insertion of a batch that takes

place at the τ + 1-th iteration.

Lemma 6.3. On insertion of a batch of points sampled from Model 6.1, the components

along u, v and gτ change as:

ατ+1 =
ατ (1 + σ2

1 + ε)2

(1 + σ2
1 + ε)2 − (1− ατ)(1 + 2(σ2

1 + ε))
(6.6)

γτ+1 =
γτ (σ2

1 + ε)2

(σ2
1 + ε)2 + ατ (1 + 2(σ2

1 + ε))
(6.7)

δτ+1 =
δτ (σ2

1 + ε)2

(σ2
1 + ε)2 + ατ (1 + 2(σ2

1 + ε))
(6.8)

Proof. Let us assume that B is the τ + 1− th batch, and all points in this batch are from

the Model 6.1.

1

B

∑
t∈B

xtxt
Tqτ = (uuT + σ2

1I + E)qτ

=
√
ατu + (σ2

1 + ε)qτ

sτ+1 =
√
ατu + (σ2

1 + ε)qτ

=
√
ατu(1 + (σ2

1 + ε)) + (
√
γτv +

√
δτgτ)(σ2

1 + ε)

||sτ+1||2 = ατ (1 + σ2
1 + ε)2 + γτ (σ2

1 + ε)2 + δτ (σ2
1 + ε)2

Online Eigenvector Updates 39

||sτ+1||2 can be written in two ways.

||sτ+1||22 = (σ2
1 + ε)2 + ατ (1 + 2σ2

1 + 2ε)

and

||sτ+1||22 = (1 + σ2
1 + ε)2 − (1− ατ)(1 + 2σ2

1 + 2ε)

Using Equation 6.3, Equation 6.4 and Equation 6.5,

ατ+1 =
ατ (1 + σ2

1 + ε)2

(1 + σ2
1 + ε)2 − (1− ατ)(1 + 2σ2

1 + 2ε)

γτ+1 =
γτ (σ2

1 + ε)2

(σ2
1 + ε)2 + ατ (1 + 2σ2

1 + 2ε)

δτ+1 =
δτ (σ2

1 + ε)2

(σ2
1 + ε)2 + ατ (1 + 2σ2

1 + 2ε)

Upon insertion of a batch of points from Model 6.1, we observe that the component along

u increases, while the components along v and gτ decreases. As the number of batches

from Model 6.1 increases, the eigenvector estimated should align more with u and, hence,

the component ατ should increase, and γτ , δτ should decrease.

Lemma 6.4. On insertion of a batch of points sampled from Model 6.2, the components

along u, v and gτ change as:

ατ+1 =
ατ (σ2

2 + ε)2

(σ2
2 + ε)2 + γτ (1 + 2(σ2

2 + ε))
(6.9)

γτ+1 =
γτ (1 + σ2

2 + ε)2

(1 + σ2
2 + ε)2 − (1− γτ)(1 + 2(σ2

2 + ε))
(6.10)

δτ+1 =
δτ (σ2

2 + ε)2

(σ2
2 + ε)2 + γτ (1 + 2(σ2

2 + ε))
(6.11)

Online Eigenvector Updates 40

Proof. Let us assume that B is the τ + 1− th batch, and all points in this batch are from

the Model 6.2.

1

B

∑
t∈B

xtxt
Tqτ = (vvT + σ2

2I + E)qτ

=
√
γτv + (σ2

2 + ε)qτ

sτ+1 =
√
γτv + (σ2

2 + ε)qτ

=
√
γτv(1 + (σ2

2 + ε)) + (
√
ατu +

√
δτgτ)(σ2

2 + ε)

||sτ+1||2 = γτ (1 + σ2
2 + ε)2 + ατ (σ2

2 + ε)2 + δτ (σ2
2 + ε)2

||sτ+1||2 can be written in two ways.

||sτ+1||22 = (σ2
2 + ε)2 + γτ (1 + 2σ2

2 + 2ε)

and

||sτ+1||22 = (1 + σ2
2 + ε)2 − (1− γτ)(1 + 2σ2

2 + 2ε)

Using Equation 6.3, Equation 6.4 and Equation 6.5,

ατ+1 =
ατ (σ2

2 + ε)2

(σ2
2 + ε)2 + γτ (1 + 2(σ2

2 + ε))

γτ+1 =
γτ (1 + σ2

2 + ε)2

(1 + σ2
2 + ε)2 − (1− γτ)(1 + 2(σ2

2 + ε))

δτ+1 =
δτ (σ2

2 + ε)2

(σ2
2 + ε)2 + γτ (1 + 2(σ2

2 + ε))

Upon insertion of a batch of points from Model 6.2, we observe that the component along

v increases, while the components along u and gτ decreases. As the number of batches

from Model 6.2 increases, the eigenvector estimated should align more with v and, hence,

the component γτ should increase, and ατ , δτ should decrease.

6.0.4.2 Deletions

We characterize the behaviour of the proposed algorithm on deletion of a batch of points

which happens at the τ + 1-th iteration.

Online Eigenvector Updates 41

Lemma 6.5. On deletion of a batch of points sampled from Model 6.2, the components

along u, v and gτ change as:

ατ+1 =
ατ (λτ −B(σ2

2 + ε))2

(λτ −B(σ2
2 + ε))2 − γτ (2Bλτ −B2(1 + 2σ2

2 + 2ε))
(6.12)

γτ+1 =
γτ (λτ −B(1 + σ2

2 + ε))2

(λτ −B(1 + σ2
2 + ε))2 + (1− γτ)(B2(1 + 2σ2

2 + 2ε)− 2Bλτ)
(6.13)

δτ+1 =
δτ (λτ −B(σ2

2 + ε))2

(λτ −B(σ2
2 + ε))2 − γτ (2Bλτ −B2(1 + 2σ2

2 + 2ε))
(6.14)

Proof. If B consists of the points in the τ + 1− th batch, and all points to be deleted are

from Model 6.2,

y = B(vvT + σ2
2I + E)qτ

= B(
√
γτv + (σ2

2 + ε)qτ)

Now, we can write,

sτ+1 = λτqτ − y

= (λτ −B(vvT + σ2
2I + E))qτ

= (
√
ατu +

√
δτgτ)(λτ −B(σ2

2 + ε)) +
√
γτv(λτ −B(1 + σ2

2 + ε))

||sτ+1||22 = (ατ + δτ)(λτ −B(σ2
2 + ε))2 + γτ (λτ −B(1 + σ2

2 + ε))2

Again, ||sτ+1||22 can be written in two ways,

||sτ+1||22 = (λτ −B(σ2
2 + ε))2 + γτ (B2(1 + 2σ2

2 + 2ε)− 2Bλτ)

and

||sτ+1||22 = (λτ −B(1 + σ2
2 + ε))2 + (1− γτ)(B2(1 + 2σ2

2 + 2ε)− 2Bλτ)

Using Equation 6.3, Equation 6.4 and Equation 6.5,

ατ+1 =
ατ (λτ −B(σ2

2 + ε))2

(λτ −B(σ2
2 + ε))2 − γτ (2Bλτ −B2(1 + 2σ2

2 + 2ε))

γτ+1 =
γτ (λτ −B(1 + σ2

2 + ε))2

(λτ −B(1 + σ2
2 + ε))2 + (1− γτ)(B2(1 + 2σ2

2 + 2ε)− 2Bλτ)

δτ+1 =
δτ (λτ −B(σ2

2 + ε))2

(λτ −B(σ2
2 + ε))2 − γτ (2Bλτ −B2(1 + 2σ2

2 + 2ε))

Online Eigenvector Updates 42

Upon deletion of a batch of points from Model 6.2, we observe that the component along v

decreases, while the components along v and gτ increases. But, this trend is only observed

when 2Bλτ > B2(1 + 2σ2
2 + 2ε). λτ is an indication of the number of points in the dataset

and is an indicator of the number of points in the data. As the number of batches from

Model 6.1 increases, the eigenvector estimated should align more with u and, hence, the

component ατ should increase. Since we are deleting a component along v, we expect γτ

to decrease and the components perpendicular to v, i.e., ατ and δτ to increase.

Theorem 6.6. For any batch of insertions or deletions,

ατ+1 + δτ+1

ατ + δτ
≤ ατ+1

ατ

Proof. There can be atmost three different types of operations, i.e.,

Case 1: Insertion of a batch where data is from Model 6.1

Note: Equation 6.6 can also be written as

ατ+1 =
ατ (1 + σ2

1 + ε)2

(σ2
1 + ε)2 + ατ (1 + 2(σ2

1 + ε))
(6.15)

From Equation 6.15 and Equation 6.8,

δτ+1

ατ+1
=

δτ (σ2
1+ε)2

(σ2
1+ε)2+ατ (1+2(σ2

1+ε))

ατ (1+σ2
1+ε)2

(σ2
1+ε)2+ατ (1+2(σ2

1+ε))

=
δτ (σ2

1 + ε)2

ατ (1 + σ2
1 + ε)2

≤ δτ
ατ

δτ+1 + ατ+1

ατ+1
≤ δτ + ατ

ατ

Case 2: Insertion of a batch where data is from Model 6.2

Online Eigenvector Updates 43

From Equation 6.9 and Equation 6.11,

δτ+1

ατ+1
=

δτ (σ2
2+ε)2

(σ2
2+ε)2+γτ (1+2(σ2

2+ε))

ατ (σ2
2+ε)2

(σ2
2+ε)2+γτ (1+2(σ2

2+ε))

δτ+1

ατ+1
=
δτ
ατ

δτ+1 + ατ+1

ατ+1
=
δτ + ατ
ατ

Case 3: Deletion of a batch where data is from Model 6.2

From Equation 6.12 and Equation 6.14,

δτ+1

ατ+1
=

δτ (λτ−B(σ2
2+ε))2

(λτ−B(σ2
2+ε))2−γτ (2Bλτ−B2(1+2σ2

2+2ε))

ατ (λτ−B(σ2
2+ε))2

(λτ−B(σ2
2+ε))2−γτ (2Bλτ−B2(1+2σ2

2+2ε))

δτ+1

ατ+1
=
δτ
ατ

δτ+1 + ατ+1

ατ+1
=
δτ + ατ
ατ

6.0.5 Results

We implemented the proposed algorithm in Python3.6 using the numpy library. We

demonstrate the performance of the proposed algorithm on an open source dataset, namely,

MNIST. It consists of images of handwritten digits. This indicates that the algorithm per-

forms well on data other than those generated from the orthogonal dual spiked covariance

model.

For every batch operation, we choose to perform either an insertion or a deletion. Results

were obtained for the following parameters.

1. Batch sizes: 100, 200.

2. Probability of insertion: 0.5, 0.8.

3. Total number of points inserted or deleted: 20,000 and 40,000.

We measure the performance of our algorithm on the basis of i) angle of the computed

eigenvector with respect to the exact eigenvector ii) norm of the computed eigenvector

Online Eigenvector Updates 44

Angle Error (degrees) Norm Error Eigenvalues
50% Insertions, Points processed = 20k

Angle Error (degrees) Norm Error Eigenvalues
80% Insertions, Points processed = 20k

Angle Error (degrees) Norm Error Eigenvalues
50% Insertions, Points processed = 40k

Angle Error (degrees) Norm Error Eigenvalues
80% Insertions, Points processed = 40k

Figure 6.1: Results on the MNIST Dataset with Batch Size = 100

with respect to the exact eigenvector. We also track the eigenvalue after every batch of

insertion or deletion.

As observed from Figure 6.1 and Figure 6.2, we observe that the proposed algorithm tracks

the topmost eigenvector with little error. For batch size, B = 100 and B = 200, the angle

error is bounded by 10 degrees and 6 degrees respectively. It is also evident that the

eigenvalue of the data stream is approximated reasonably well. We can also observe that

the error distributions appear almost gaussian in nature with mean close to 6 degrees for

batch size B = 100, and 4.5 degrees for B = 200. For all plots, the errors shown are at

each iteration. Plots for insertion and deletion are not shown separately.

Online Eigenvector Updates 45

Angle Error (degrees) Norm Error Eigenvalues
50% Insertions, Points processed = 20k

Angle Error (degrees) Norm Error Eigenvalues
80% Insertions, Points processed = 20k

Angle Error (degrees) Norm Error Eigenvalues
50% Insertions, Points processed = 40k

Angle Error (degrees) Norm Error Eigenvalues
80% Insertions, Points processed = 40k

Figure 6.2: Results on the MNIST Dataset with Batch Size = 200

6.0.6 Rank-k Updates

We also propose an algorithm for maintaining the top-k eigenvectors in a dyanmic stream

as defined in Section 6.0.2. The pseudocode is presented in Algorithm 11 and Algorithm 12.

We also show some result for the error in the first and second eigenvector estimation. We

process 20,000 operations in a batch size of 200 with probability of insert = 0.5 as shown

in Figure 6.3 and probability of having an insert operation = 0.8 as shown in Figure 6.4.

Though the error in estimation of the second largest eigenvector is higher than that of

the largest eigenvector, the error is still reasonable. In Figure 6.3, we see that the error

Online Eigenvector Updates 46

Algorithm 11 Rank-k updates on Insertion

1: procedure Insert(B,Q, λ)
2: S ← 0k×p
3: for xt ∈ B do
4: Y ←< Q,xt > xt

5: S ← S + Y
6: λ← λ+ < Q,Y >

7: S ← 1
BS

8: Q,R← QR(S)
9: return Q,λ

Algorithm 12 Rank-k updates on Deletion

1: procedure Delete(B,Q, λ)
2: S ← 0k×p
3: λτ ← 0
4: for xt ∈ B do
5: Y ←< Q,xt > xt

6: S ← S + Y
7: λt ← λt+ < Q,Y >

8: S ← λQ− S
9: Q,R← QR(S)

10: λ← λ− λt
11: return Q,λ

is bounded by a value around 20 degrees, but this occurs very infrequently. Similarly, for

Figure 6.4, the frequency of occurence of high errors is quite rare. For all plots, the errors

shown are at each iteration. Plots for insertion and deletion are not shown separately.

6.0.7 Conclusion

In this chapter, we presented an algorithm for online eigenvectors. The theoretical analysis

of the proposed algorithm was performed on the orthogonal dual spiked covariance model

described in Section 6.0.2. We demonstrate the performance of the algorithm on an open

source dataset with various parameters and show that it performs well on real data as

well.

Online Eigenvector Updates 47

Error in degrees Norm Error
Errors in the largest eigenvector estimation

Error in degrees Norm Error
Errors in the second largest eigenvector estimation

Eigenvalues

Figure 6.3: Results on the MNIST Dataset with 50% insertions for top-2 eigenvectors

Online Eigenvector Updates 48

Angle Error (degrees) Norm Error
Errors in the largest eigenvector estimation

Angle Error (degrees) Norm Error
Errors in the second largest eigenvector estimation

Eigenvalues

Figure 6.4: Results on the MNIST Dataset with 80% insertions for top-2 eigenvectors

Conclusion

In this thesis, we propose splitting rules for the hierarchical clustering. These splitting

rules have a provable worst case guarantee and are efficient in practice. Our techniques

have approximation guarantees for a specific objective. We demonstrate the usefulness of

the partitions created in classification and anomaly detection tasks that require real-time

response and have a variety of class labels. The techniques empirically outperform all

reasonable baselines on large datasets, matching the classification guarantees while having

a logarithmic query time.

We then propose two naive heuristics for the online hierarchical clustering problem and

demonstrate their excellent empirical performance with minimal quality loss as compared

to their batch counterparts. We also identify a natural sub-problem, namely, the online

eigenvector updation problem. We propose an algorithm to update the largest eigenvec-

tor under insertion as well as deletion operations, show some theoretical guarantees and

the excellent performance of the algorithm on the MNIST dataset. We also propose an

algorithm to maintain the top-k eigenvectors under a dynamic stream of operations. We

do not show any theoretical guarantees for the same.

7.0.1 Future Work

This work can be extended to give theoretical bounds for the online updations of the top-k

eigenvectors, apply this to online hierarchical clustering and prove some theoretical bound

on the quality of the solutions provided. A related area would be to look at distributed

hierarchical clustering algorithms with provable worst case guarantees.

49

Bibliography

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig

Schmidt. 2015. Practical and Optimal LSH for Angular Distance. CoRR abs/1509.02897

(2015). arXiv:1509.02897 http://arxiv.org/abs/1509.02897

Sanjeev Arora, Satish Rao, and Umesh Vazirani. 2009. Expander flows, geometric embed-

dings and graph partitioning. Journal of the ACM (JACM) 56, 2 (2009), 5.

David Arthur and Sergei Vassilvitskii. 2007. k-means++: The advantages of careful seed-

ing. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-

rithms. Society for Industrial and Applied Mathematics, 1027–1035.

Mohammadhossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Haji-

aghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab Mirrokni. 2017. Affinity Cluster-

ing: Hierarchical Clustering at Scale. In Advances in Neural Information Processing Sys-

tems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett (Eds.). Curran Associates, Inc., 6864–6874. http://papers.nips.cc/

paper/7262-affinity-clustering-hierarchical-clustering-at-scale.pdf

Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associative

Searching. Commun. ACM 18, 9 (Sept. 1975), 509–517. https://doi.org/10.1145/

361002.361007

Moses Charikar and Vaggos Chatziafratis. 2017. Approximate Hierarchical Clustering via

Sparsest Cut and Spreading Metrics. In Proceedings of the Twenty-Eighth Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA ’17). Society for Industrial and Ap-

plied Mathematics, Philadelphia, PA, USA, 841–854. http://dl.acm.org/citation.

cfm?id=3039686.3039739

Kenneth L Clarkson and David P Woodruff. 2009. Numerical linear algebra in the stream-

ing model. In Proceedings of the forty-first annual ACM symposium on Theory of com-

puting. ACM, 205–214.

50

http://arxiv.org/abs/1509.02897
http://papers.nips.cc/paper/7262-affinity-clustering-hierarchical-clustering-at-scale.pdf
http://papers.nips.cc/paper/7262-affinity-clustering-hierarchical-clustering-at-scale.pdf
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
http://dl.acm.org/citation.cfm?id=3039686.3039739
http://dl.acm.org/citation.cfm?id=3039686.3039739

Bibliography 51

Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Math-

ieu. 2017. Hierarchical Clustering: Objective Functions and Algorithms. CoRR

abs/1704.02147 (2017). arXiv:1704.02147 http://arxiv.org/abs/1704.02147

Sanjoy Dasgupta. 2016. A Cost Function for Similarity-based Hierarchical Clustering.

In Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Comput-

ing (STOC ’16). ACM, New York, NY, USA, 118–127. https://doi.org/10.1145/

2897518.2897527

Dua Dheeru and Efi Karra Taniskidou. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

Dan Garber, Elad Hazan, and Tengyu Ma. 2015. Online Learning of Eigenvectors. In

Proceedings of the 32nd International Conference on Machine Learning (Proceedings of

Machine Learning Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, Lille,

France, 560–568. http://proceedings.mlr.press/v37/garberb15.html

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. 2011. Finding structure with

randomness: Probabilistic algorithms for constructing approximate matrix decomposi-

tions. SIAM review 53, 2 (2011), 217–288.

Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards Re-

moving the Curse of Dimensionality. In Proceedings of the Thirtieth Annual ACM Sym-

posium on Theory of Computing (STOC ’98). ACM, New York, NY, USA, 604–613.

https://doi.org/10.1145/276698.276876

Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, and Andrew McCallum. 2017. A

hierarchical algorithm for extreme clustering. In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM, 255–264.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based

learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

Tom Leighton and Satish Rao. 1999. Multicommodity max-flow min-cut theorems and

their use in designing approximation algorithms. Journal of the ACM (JACM) 46, 6

(1999), 787–832.

Mark McCartin-Lim, Andrew McGregor, and Rui Wang. 2012. Approximate Principal

Direction Trees. CoRR abs/1206.4668 (2012). arXiv:1206.4668 http://arxiv.org/

abs/1206.4668

Frank McSherry. 2001. Spectral partitioning of random graphs. In Proceedings 2001 IEEE

International Conference on Cluster Computing. IEEE, 529–537.

http://arxiv.org/abs/1704.02147
https://doi.org/10.1145/2897518.2897527
https://doi.org/10.1145/2897518.2897527
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://proceedings.mlr.press/v37/garberb15.html
https://doi.org/10.1145/276698.276876
http://arxiv.org/abs/1206.4668
http://arxiv.org/abs/1206.4668

Bibliography 52

Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain. 2013. Memory Limited,

Streaming PCA. In Proceedings of the 26th International Conference on Neural In-

formation Processing Systems - Volume 2 (NIPS’13). Curran Associates Inc., USA,

2886–2894. http://dl.acm.org/citation.cfm?id=2999792.2999934

Nicholas Monath, Ari Kobren, Akshay Krishnamurthy, and Andrew McCallum. 2017.

Gradient-based Hierarchical Clustering.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global

Vectors for Word Representation. In Proceedings of the 2014 Conference on Empiri-

cal Methods in Natural Language Processing (EMNLP). Association for Computational

Linguistics, Doha, Qatar, 1532–1543. https://doi.org/10.3115/v1/D14-1162

Anderson Rocha and Siome Klein Goldenstein. 2014. Multiclass from binary: Expanding

one-versus-all, one-versus-one and ecoc-based approaches. IEEE Transactions on Neural

Networks and Learning Systems 25, 2 (2014), 289–302.

Luca Trevisan. 2013. Lecture notes on expansion, sparsest cut, and spectral graph theory.

, 81 pages. https://people.eecs.berkeley.edu/~luca/books/expanders.pdf

http://dl.acm.org/citation.cfm?id=2999792.2999934
https://doi.org/10.3115/v1/D14-1162
https://people.eecs.berkeley.edu/~luca/books/expanders.pdf

	Certificate
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.0.1 Our Contributions
	1.0.2 Organization of the Thesis

	2 Preliminaries
	2.0.1 Cost Function for Hierarchical Clustering
	2.0.2 Sparsest Cut
	2.0.3 Laplacian, Eigenvalues and Expansion
	2.0.4 Power Method

	3 Related Work
	3.0.1 Cost function for Hierarchical Clustering
	3.0.2 Algorithms
	3.0.2.1 Agglomerative Merging Criteria
	3.0.2.2 Divisive Splitting Criteria
	3.0.2.3 Recent advancements

	3.0.3 Online Algorithms
	3.0.3.1 Hierarchical Clustering
	3.0.3.2 Streaming Eigenvector Updates

	4 Efficient Hierarchical Clustering
	4.0.1 Proposed Splitting Methods
	4.0.2 Theoretical Guarantees
	4.0.2.1 Hierarchical Clustering using Eigenvectors
	4.0.2.2 Approximation to the Planted Partition
	4.0.2.3 Hierarchical Clustering using Approximate Eigenvector
	4.0.2.4 Hierarchical Clustering using Random Hyperplanes

	4.0.3 Experimental Evaluation
	4.0.3.1 Cost Function and Dendrogram Purity
	4.0.3.2 Nearest Neighbor Classification using Hierarchies
	4.0.3.3 Results
	4.0.3.4 Test of Significance
	4.0.3.5 Anomaly Detection using Hierarchies

	4.0.4 Conclusion

	5 Online Hierarchical Clustering
	5.0.1 Introduction
	5.0.2 Heuristics
	5.0.3 Results
	5.0.4 Eigenvector Updates for Hierarchical Clustering
	5.0.5 Conclusion

	6 Online Eigenvector Updates
	6.0.1 Introduction
	6.0.2 Problem Formulation and Notation
	6.0.3 Proposed Algorithm
	6.0.4 Theoretical Guarantees
	6.0.4.1 Insertions
	6.0.4.2 Deletions

	6.0.5 Results
	6.0.6 Rank-k Updates
	6.0.7 Conclusion

	7 Conclusion
	7.0.1 Future Work

	Bibliography

